中国剩余定理-表达整数的奇怪方式

表达整数的奇怪方式 

问题:给定2n个整数a1,a2,…,an和m1,m2,…,mn,求一个最小的非负整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod ai)。

中国剩余定理:

举例:

推导:

合并方程组:

Example

给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的非负整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod ai)。

输入格式

第1行包含整数n。

第2..n行:每i+1行包含两个整数aiai和mimi,数之间用空格隔开。

输出格式

输出最小非负整数x,如果x不存在,则输出-1。
如果存在x,则数据保证x一定在64位整数范围内。

数据范围

1≤ai≤231−11≤ai≤231−1,
0≤mi<ai0≤mi<ai
1≤n≤251≤n≤25

输入样例:

2
8 7
11 9

输出样例:

31
#include<iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

//扩展欧几里得算法模版
LL exgcd(LL a, LL b, LL &x, LL &y)
{
    if (!b)//如果b = 0,返回一组最小解
    {
        x = 1, y = 0;
        return a;
    }
    by + (a mod b)x = (a, b)最大公约数d
    LL d = exgcd(b, a % b, y, x);//得到最大公约数
    //a mod b = a - (a / b)下取整 * b带入
    //by + (a - (a / b)下取整 * b)x = d;
    //展开整理:ax + b (y - (a/b)*x)
    //得到a的系数不变为a,y的系数变成:y - (a/b)*x
    y -= a / b * x;
    return d;
}


int main()
{
    //第1行包含整数n。
    int n;
    cin >> n;
   // scanf("%d", &n);
    //第2..n行:每i+1行包含两个整数ai和mi,数之间用空格隔开。
    //合并思路:每次把新的方程合并成现有方程中
    bool has_answer = true;//用变量表示当前是否无解
    LL a1, m1;
    cin >> a1 >> m1;
    
    for (int i = 0; i < n -1; i ++)
    {
        LL a2, m2;
        cin >> a2 >> m2;
        
        LL k1, k2;
        LL d =  exgcd(a1, a2, k1, k2);//求最大公约数
        
        if ((m2 - m1) % d)//如果余数不是0则无解
        {
            has_answer = false;
            break;
        }
        //否则有解
        //k1a1 - k2a2 = d,d是m1 - m2的倍数,所以得翻若干倍
        //翻成m2 - m1
        k1 *= (m2 - m1) / d;
        //中间过程,k1变成方程最小的整数解
        LL t = a2 / d;//首先把a2 / d存下来
        //然后用k1变成最小正整数解
        k1 = (k1 % t + t) % t;
        
        //最后变成x  = ka + m
        m1 = a1 * k1 + m1;
        
        //新的方程求a1,a2最小公倍数
        a1 = abs(a1 / d * a2); 
    }
    if (has_answer)//如果有解
    {
        //C++上取余可能去负的,比如-5 mod 3 余 -2
        //要想得到正余数,需要-5 mod 3加上3然后在mod 3就可以了
        cout << (m1 % a1 + a1) % a1 << endl;//求的是m1 % a1正的余数,非负的余数
    }//如果无解
    else puts("-1");
    
    return 0;
}

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
#include #include using namespace std; typedef int LL; typedef pair PLL; LL inv(LL t, LL p) {//t关于p的逆元 if (t >= p) t = t%p; return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } PLL linear(LL A[], LL B[], LL M[], int n) {//解A[i]x = B[i] (mod M[i]),总共n个线性方程组 LL x = 0, m = 1; for (int i = 0; i < n; i++) { LL a = A[i] * m, b = B[i] - A[i] * x, d =gcd(M[i], a); if (b % d != 0) return PLL(0, -1);//答案不存在,返回-1 LL t = b / d * inv(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } x = (x % m + m) % m; return PLL(x, m);//返回的x就是答案,m是最后的lcm值 } int main() { int n; scanf_s("%d", &n); LL a[2017], b[2017], m[2017]; for (int i = 0; i<n; i++) { scanf_s("%d%d%d", &a[i], &b[i], &m[i]); } PLL pa = linear(a, b, m, n); printf("%lld\n", pa.first); } 设计思路: 有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 解这题,先构造一个答案 5*7*inv(5*7, 3) % 3 = 1 3*7*inv(3*7, 5) % 5 = 1 3*5*inv(3*5, 7) % 7 = 1 然后两边同乘你需要的数 2 * 5*7*inv(5*7, 3) % 3 = 2 3 * 3*7*inv(3*7, 5) % 5 = 3 2 * 3*5*inv(3*5, 7) % 7 = 2 令 a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7) 那么 a % 3 = 2 b % 5 = 3 c % 7 = 2 其实答案就是a+b+c 因为 a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数 所以 (a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2 (a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3 (a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2 答案a+b+c完全满足题意 但是答案,不只一个,有无穷个,每相隔105就是一个答案(105 = 3 * 5 * 7) a=2*5*7*2=140 b=3*3*7*1=63 c=2*3*5*1=30 140+63+30=233 2335 = 23 如果题目问你最小的那个答案,那就是23了。 当 1*x=2(%3) 1*x=3(%5) 1*x=2(%7) 输入: 3 1 2 3 1 3 5 1 2 7 输出: 23

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值