这题我们可以用权值线段树来做。
题外话:这题50分的应该都是AC的吧???
我们先求出a数组的前缀和数组c (记得模P)。
然后每次做完当前状态i后将c[i]加入到权值线段树里。
因为答案要求尽可能小,所以我们对于以当前点为右端点的答案为:
a[i] - a[i]-K的前驱
或
a[i]+p - a[i]+P-K的前驱
然后不断更新答案即可。
上标:
#include<cstdio>
#define N 100010
#define ma 100000000
#define E (1<<30)
using namespace std;
int ls[4000010],rs[4000010],mi[4000010];
int n,K,P,a[N],s,ans=E,tot=1,x1;
inline int read()
{
int x=0; char c=getchar();
while (c<'0' || c>'9') c=getchar();
while (c>='0' && c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x;
}
void ins(int x,int l,int r,int add)
{
if (l==r) {mi[x]=add; return;}
int mid=l+r>>1;
if (add<=mid)
{
if (!ls[x]) ls[x]=++tot,mi[tot]=E;
ins(ls[x],l,mid,add);
}
else
{
if (!rs[x]) rs[x]=++tot,mi[tot]=E;
ins(rs[x],mid+1,r,add);
}
if (ls[x]) mi[x]=mi[ls[x]];
else mi[x]=mi[rs[x]];
}
void bef(int x,int l,int r,int cp)
{
if (l==r) {x1=l; return;}
int mid=l+r>>1;
if (mi[rs[x]]<=cp) bef(rs[x],mid+1,r,cp);
else bef(ls[x],l,mid,cp);
}
int main()
{
n=read(),K=read(),P=read();
mi[0]=mi[1]=E;
for (int i=1;i<=n;i++)
{
a[i]=(read()+a[i-1])%P;
if (a[i]>=K && a[i]<ans) ans=a[i];
}
ins(1,0,ma,a[1]);
for (int i=2;i<=n;i++)
{
if (a[i]>=K)
{
x1=-E,bef(1,0,ma,a[i]-K);
if (a[i]-x1<ans) ans=a[i]-x1;
}
if (a[i]+P-K<=ma)
{
x1=-E,bef(1,0,ma,a[i]+P-K);
if (a[i]+P-x1<ans) ans=a[i]+P-x1;
}
ins(1,0,ma,a[i]);
}
printf("%d\n",ans);
return 0;
}