题目描述
这里有一个非负整数数组 arr
,你最开始位于该数组的起始下标 start
处。当你位于下标 i
处时,你可以跳到 i + arr[i]
或者 i - arr[i]
。
请你判断自己是否能够跳到对应元素值为 0 的 任一 下标处。
注意,不管是什么情况下,你都无法跳到数组之外。
示例 1:
输入:arr = [4,2,3,0,3,1,2], start = 5
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案:
下标 5 -> 下标 4 -> 下标 1 -> 下标 3
下标 5 -> 下标 6 -> 下标 4 -> 下标 1 -> 下标 3
示例 2:
输入:arr = [4,2,3,0,3,1,2], start = 0
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案:
下标 0 -> 下标 4 -> 下标 1 -> 下标 3
示例 3:
输入:arr = [3,0,2,1,2], start = 2
输出:false
解释:无法到达值为 0 的下标 1 处。
提示:
1 <= arr.length <= 5 * 10^4
0 <= arr[i] < arr.length
0 <= start < arr.length
问题分析
这个问题与之前的跳跃游戏有一些不同:
- 我们可以向前或向后跳跃(双向跳跃)
- 目标是到达任何一个值为0的下标,而不是数组的末尾
- 跳跃的距离是固定的,等于当前位置的值
这个问题本质上是一个图搜索问题,我们可以将数组中的每个下标视为图中的节点,从一个下标可以跳到的位置就是它的相邻节点。我们需要从起始节点出发,判断是否能到达任何一个值为0的节点。
解题思路
对于这类问题,我们有两种典型的搜索策略:
- 广度优先搜索(BFS):逐层探索,找到最短路径
- 深度优先搜索(DFS):沿着一条路径一直探索到底,然后回溯
由于题目只要求判断是否能到达值为0的下标,而不要求找到最短路径,所以两种方法都可以使用。这里我们将分别展示BFS和DFS的解法。
解法1:广度优先搜索(BFS)
BFS的思路是:
- 创建一个队列,将起始位置加入队列
- 创建一个访问数组,标记已经访问过的下标(避免重复访问和循环)
- 不断从队列中取出下标,检查是否为目标值(arr[i] == 0)
- 如果不是目标值,则将可以跳到的新位置(i + arr[i]和i - arr[i])加入队列
- 继续步骤3-4,直到队列为空或找到目标值
解法2:深度优先搜索(DFS)
DFS的思路是:
- 创建一个访问数组,标记已经访问过的下标
- 从起始位置开始,递归地探索可以到达的所有位置
- 如果当前位置的值为0,返回true
- 否则,尝试跳到i + arr[i]和i - arr[i],并递归地判断是否能到达目标
- 如果两个方向都无法到达目标,返回false
算法过程
让我们以示例1为例,详细解释BFS的执行过程:
arr = [4,2,3,0,3,1,2], start = 5
- 初始状态:
- 队列:[5]
- 已访问:[false, false, false, false, false, true, false]
- 处理节点5:
- 当前值:arr[5] = 1
- 尝试向前跳:5 + 1 = 6,加入队列
- 尝试向后跳:5 - 1 = 4,加入队列
- 队列:[6, 4]
- 已访问:[false, false, false, false, true, true, true]
- 处理节点6:
- 当前值:arr[6] = 2
- 尝试向前跳:6 + 2 = 8,越界,不加入队列
- 尝试向后跳:6 - 2 = 4,已访问,不加入队列
- 队列:[4]
- 已访问:[false, false, false, false, true, true, true]
- 处理节点4:
- 当前值:arr[4] = 3
- 尝试向前跳:4 + 3 = 7,越界,不加入队列
- 尝试向后跳:4 - 3 = 1,加入队列
- 队列:[1]
- 已访问:[false, true, false, false, true, true, true]
- 处理节点1:
- 当前值:arr[1] = 2
- 尝试向前跳:1 + 2 = 3,加入队列
- 尝试向后跳:1 - 2 = -1,越界,不加入队列
- 队列:[3]
- 已访问:[false, true, false, true, true, true, true]
- 处理节点3:
- 当前值:arr[3] = 0,找到目标值,返回true
因此,从起始位置5出发,确实可以到达值为0的下标3,路径为:5 -> 4 -> 1 -> 3。
详细代码实现
Java 实现 - BFS
class Solution {
public boolean canReach(int[] arr, int start) {
int n = arr.length;
Queue<Integer> queue = new LinkedList<>();
boolean[] visited = new boolean[n];
// 将起始位置加入队列并标记为已访问
queue.offer(start);
visited[start] = true;
// BFS
while (!queue.isEmpty()) {
int current = queue.poll();
// 如果当前位置的值为0,返回true
if (arr[current] == 0) {
return true;
}
// 尝试向前跳
int forward = current + arr[current];
if (forward < n && !visited[forward]) {
queue.offer(forward);
visited[forward] = true;
}
// 尝试向后跳
int backward = current - arr[current];
if (backward >= 0 && !visited[backward]) {
queue.offer(backward);
visited[backward] = true;
}
}
// 无法到达值为0的下标
return false;
}
}
C# 实现 - BFS
public class Solution {
public bool CanReach(int[] arr, int start) {
int n = arr.Length;
Queue<int> queue = new Queue<int>();
bool[] visited = new bool[n];
// 将起始位置加入队列并标记为已访问
queue.Enqueue(start);
visited[start] = true;
// BFS
while (queue.Count > 0) {
int current = queue.Dequeue();
// 如果当前位置的值为0,返回true
if (arr[current] == 0) {
return true;
}
// 尝试向前跳
int forward = current + arr[current];
if (forward < n && !visited[forward]) {
queue.Enqueue(forward);
visited[forward] = true;
}
// 尝试向后跳
int backward = current - arr[current];
if (backward >= 0 && !visited[backward]) {
queue.Enqueue(backward);
visited[backward] = true;
}
}
// 无法到达值为0的下标
return false;
}
}
Java 实现 - DFS
class Solution {
public boolean canReach(int[] arr, int start) {
int n = arr.length;
boolean[] visited = new boolean[n];
return dfs(arr, start, visited);
}
private boolean dfs(int[] arr, int index, boolean[] visited) {
// 如果下标越界或已经访问过,返回false
if (index < 0 || index >= arr.length || visited[index]) {
return false;
}
// 如果当前位置的值为0,返回true
if (arr[index] == 0) {
return true;
}
// 标记当前位置为已访问
visited[index] = true;
// 尝试向前跳和向后跳
return dfs(arr, index + arr[index], visited) ||
dfs(arr, index - arr[index], visited);
}
}
C# 实现 - DFS
public class Solution {
public bool CanReach(int[] arr, int start) {
int n = arr.Length;
bool[] visited = new bool[n];
return Dfs(arr, start, visited);
}
private bool Dfs(int[] arr, int index, bool[] visited) {
// 如果下标越界或已经访问过,返回false
if (index < 0 || index >= arr.Length || visited[index]) {
return false;
}
// 如果当前位置的值为0,返回true
if (arr[index] == 0) {
return true;
}
// 标记当前位置为已访问
visited[index] = true;
// 尝试向前跳和向后跳
return Dfs(arr, index + arr[index], visited) ||
Dfs(arr, index - arr[index], visited);
}
}
复杂度分析
BFS 方法
- 时间复杂度:O(n),其中 n 是数组的长度。在最坏情况下,我们需要访问所有节点一次。
- 空间复杂度:O(n),需要使用队列和访问数组,队列的大小最大为O(n),访问数组的大小为O(n)。
DFS 方法
- 时间复杂度:O(n),与BFS相同,最坏情况下需要访问所有节点一次。
- 空间复杂度:O(n),需要使用访问数组和递归调用栈,在最坏情况下,递归调用栈的深度可能达到O(n)。
BFS和DFS的对比
- BFS(广度优先搜索):
- 优点:可以找到最短路径(如果需要的话)
- 适用场景:当目标节点到起始节点的距离较近时
- 实现方式:使用队列,先进先出
- DFS(深度优先搜索):
- 优点:实现简单,尤其是递归实现
- 适用场景:当解空间非常大或需要深入探索时
- 实现方式:使用递归或栈,先进后出
对于这个问题,两种方法都可以很好地解决。选择哪种方法主要取决于个人偏好和问题的具体要求。
边界情况与注意事项
- 数组只有一个元素:如果arr.length == 1,只有当arr[0] == 0且start == 0时才能返回true。
- 无法到达任何值为0的位置:如示例3所示,有些情况下可能无法到达任何值为0的位置,此时返回false。
- 可能的循环路径:由于可以向前和向后跳,很容易形成循环路径。使用visited数组标记已访问的位置可以避免这个问题。
- 越界检查:在进行跳跃操作时,需要确保新的位置不会越界(小于0或大于等于数组长度)。