大厂面试之Redis夺命连环问

说说Redis基本数据类型有哪些吧?

Redis 是一个内存中的数据结构存储系统,它提供了多种数据结构来满足不同的需求。下面是对您描述的 Redis 中各种数据结构及其使用场景的整理:

字符串对象(string)

  • Int整数: 当字符串对象保存的是整数值时,Redis 可能会使用整数编码,这有助于节省内存空间。
  • Embstr编码的简单动态字符串(SDS): 当字符串对象保存的是较短的字符串时,Redis 会使用这种编码方式,它可以快速获取字符串长度,并且避免缓冲区溢出。
  • Raw简单动态字符串(SDS): 对于较长的字符串,Redis 会使用 Raw 编码,同样利用 SDS 的优势,但不享受 Embstr 带来的额外优化。

列表对象(list)

  • Ziplist: 这是一种紧凑的数据结构,当列表包含的元素较少且每个元素都不长时,Redis 会选择这种编码。
  • Linkedlist: 当列表元素较多或者元素较大时,Redis 会使用双向链表来存储列表数据。

哈希对象(hash)

  • Ziplist: 类似于列表对象,当哈希对象的键值对较少且每个键值对都不长时,Redis 会选择这种编码。
  • Hashtables: 当哈希对象的键值对较多或者键值对较长时,Redis 会使用哈希表来存储数据。Redis 的哈希表支持渐进式 rehashing,可以在不影响服务可用性的情况下扩展或收缩哈希表。

集合对象(set)

  • Intset: 如果集合中的所有元素都是整数,并且数量不多,Redis 会使用 intset 这种基于数组的结构来存储集合。
  • Hashtables: 当集合中元素数量较多或者元素不是整数时,Redis 会使用哈希表来存储集合数据。

有序集合对象(zset)

  • Ziplist: 当有序集合的元素较少且每个元素的分值和成员都不长时,Redis 会选择 ziplist 编码。
  • Skiplist: 当有序集合元素较多或者元素较长时,Redis 会使用跳跃表来存储有序集合数据。跳跃表是一种高效的有序数据结构,支持快速查找、插入和删除操作。

Redis 根据数据的特性自动选择最适合的编码形式,以达到最佳的空间利用率和操作性能。这种机制使得 Redis 能够灵活地适应不同的应用场景,并且在内存消耗和操作速度之间取得平衡。

Redis为什么快呢?

redis的速度非常的快,单机的redis就可以支撑每秒10几万的并发,相对于mysql来说,性能是mysql的几十倍。速度快的原因主要有几点:

  • 完全基于内存操作
  • C语言实现,优化过的数据结构,基于几种基础的数据结构,redis做了大量的优化,性能极高
  • 使用单线程,无上下文的切换成本
  • 基于非阻塞的IO多路复用机制

那为什么Redis6.0之后又改用多线程呢?

redis使用多线程并非是完全摒弃单线程,redis还是使用单线程模型来处理客户端的请求,只是使用多线程来处理数据的读写和协议解析,执行命令还是使用单线程。

这样做的目的是因为redis的性能瓶颈在于网络IO而非CPU,使用多线程能提升IO读写的效率,从而整体提高redis的性能。

知道什么是热key吗?热key问题怎么解决?

所谓热key问题就是,突然有几十万的请求去访问redis上的某个特定key,那么这样会造成流量过于集中,达到物理网卡上限,从而导致这台redis的服务器宕机引发雪崩。

在这里插入图片描述

针对热key的解决方案:

  • 提前把热key打散到不同的服务器,降低压力
  • 加入二级缓存,提前加载热key数据到内存中,如果redis宕机,走内存查询

什么是缓存击穿、缓存穿透、缓存雪崩?

缓存击穿

缓存击穿的概念就是单个key并发访问过高,过期时导致所有请求直接打到db上,这个和热key的问题比较类似,只是说的点在于过期导致请求全部打到DB上而已。

解决方案:

  • 加锁更新,比如请求查询A,发现缓存中没有,对A这个key加锁,同时去数据库查询数据,写入缓存,再返回给用户,这样后面的请求就可以从缓存中拿到数据了。
  • 将过期时间组合写在value中,通过异步的方式不断的刷新过期时间,防止此类现象。

在这里插入图片描述

缓存穿透

缓存穿透是指查询不存在缓存中的数据,每次请求都会打到DB,就像缓存不存在一样。
在这里插入图片描述

针对这个问题,加一层布隆过滤器。布隆过滤器的原理是在你存入数据的时候,会通过散列函数将它映射为一个位数组中的K个点,同时把他们置为1。

这样当用户再次来查询A,而A在布隆过滤器值为0,直接返回,就不会产生击穿请求打到DB了。

显然,使用布隆过滤器之后会有一个问题就是误判,因为它本身是一个数组,可能会有多个值落到同一个位置,那么理论上来说只要我们的数组长度够长,误判的概率就会越低,这种问题就根据实际情况来就好了。

在这里插入图片描述

缓存雪崩

当某一时刻发生大规模的缓存失效的情况,比如你的缓存服务宕机了,会有大量的请求进来直接打到DB上,这样可能导致整个系统的崩溃,称为雪崩。雪崩和击穿、热key的问题不太一样的是,他是指大规模的缓存都过期失效了。

在这里插入图片描述

针对雪崩几个解决方案:

  • 针对不同key设置不同的过期时间,避免同时过期
  • 限流,如果redis宕机,可以限流,避免同时刻大量请求打崩DB
  • 二级缓存,同热key的方案。

Redis的过期策略有哪些?

redis主要有2种过期删除策略

惰性删除

惰性删除指的是当我们查询key的时候才对key进行检测,如果已经达到过期时间,则删除。显然,他有一个缺点就是如果这些过期的key没有被访问,那么他就一直无法被删除,而且一直占用内存。

在这里插入图片描述

定期删除

定期删除指的是redis每隔一段时间对数据库做一次检查,删除里面的过期key。由于不可能对所有key去做轮询来删除,所以redis会每次随机取一些key去做检查和删除。

那么定期+惰性都没有删除过期的key怎么办?

假设redis每次定期随机查询key的时候没有删掉,这些key也没有做查询的话,就会导致这些key一直保存在redis里面无法被删除,这时候就会走到redis的内存淘汰机制

  • volatile-lru:从已设置过期时间的key中,移出最近最少使用的key进行淘汰
  • volatile-ttl:从已设置过期时间的key中,移出将要过期的key
  • volatile-random:从已设置过期时间的key中随机选择key淘汰
  • allkeys-lru:从key中选择最近最少使用的进行淘汰
  • allkeys-random:从key中随机选择key进行淘汰
  • noeviction:当内存达到阈值的时候,新写入操作报错

持久化方式有哪些?有什么区别?

redis持久化方案分为RDB和AOF两种。

RDB

RDB持久化可以手动执行也可以根据配置定期执行,它的作用是将某个时间点上的数据库状态保存到RDB文件中,RDB文件是一个压缩的二进制文件,通过它可以还原某个时刻数据库的状态。由于RDB文件是保存在硬盘上的,所以即使redis崩溃或者退出,只要RDB文件存在,就可以用它来恢复还原数据库的状态。

可以通过SAVE或者BGSAVE来生成RDB文件。

SAVE命令会阻塞redis进程,直到RDB文件生成完毕,在进程阻塞期间,redis不能处理任何命令请求,这显然是不合适的。

BGSAVE则是会fork出一个子进程,然后由子进程去负责生成RDB文件,父进程还可以继续处理命令请求,不会阻塞进程。

AOF

AOF和RDB不同,AOF是通过保存redis服务器所执行的写命令来记录数据库状态的。

AOF通过追加、写入、同步三个步骤来实现持久化机制。

  • 当AOF持久化处于激活状态,服务器执行完写命令之后,写命令将会被追加append到aof_buf缓冲区的末尾

  • 在服务器每结束一个事件循环之前,将会调用flushAppendOnlyFile函数决定是否要将aof_buf的内容保存到AOF文件中,可以通过配置appendfsync来决定。

always ##aof_buf内容写入并同步到AOF文件

everysec ##将aof_buf中内容写入到AOF文件,如果上次同步AOF文件时间距离现在超过1秒,则再次对AOF文件进行同步

no ##将aof_buf内容写入AOF文件,但是并不对AOF文件进行同步,同步时间由操作系统决定

如果不设置,默认选项将会是everysec,因为always来说虽然最安全(只会丢失一次事件循环的写命令),但是性能较差,而everysec模式只不过会可能丢失1秒钟的数据,而no模式的效率和everysec相仿,但是会丢失上次同步AOF文件之后的所有写命令数据。

怎么实现Redis的高可用?

要想实现高可用,一台机器肯定是不够的,而redis要保证高可用,有2个可选方案。

主从架构

主从模式是最简单的实现高可用的方案,核心就是主从同步。主从同步的原理如下:

  1. slave发送sync命令到master
  2. master收到sync之后,执行bgsave,生成RDB全量文件
  3. master把slave的写命令记录到缓存
  4. bgsave执行完毕之后,发送RDB文件到slave,slave执行
  5. master发送缓存中的写命令到slave,slave执行

在这里插入图片描述

这里我写的这个命令是sync,但是在redis2.8版本之后已经使用psync来替代sync了,原因是sync命令非常消耗系统资源,而psync的效率更高。

哨兵

基于主从方案的缺点还是很明显的,假设master宕机,那么就不能写入数据,那么slave也就失去了作用,整个架构就不可用了,除非你手动切换,主要原因就是因为没有自动故障转移机制。而哨兵(sentinel)的功能比单纯的主从架构全面的多了,它具备自动故障转移、集群监控、消息通知等功能。

在这里插入图片描述

哨兵可以同时监视多个主从服务器,并且在被监视的master下线时,自动将某个slave提升为master,然后由新的master继续接收命令。整个过程如下:

  1. 初始化sentinel,将普通的redis代码替换成sentinel专用代码
  2. 初始化masters字典和服务器信息,服务器信息主要保存ip:port,并记录实例的地址和ID
  3. 创建和master的两个连接,命令连接和订阅连接,并且订阅sentinel:hello频道
  4. 每隔10秒向master发送info命令,获取master和它下面所有slave的当前信息
  5. 当发现master有新的slave之后,sentinel和新的slave同样建立两个连接,同时每个10秒发送info命令,更新master信息
  6. sentinel每隔1秒向所有服务器发送ping命令,如果某台服务器在配置的响应时间内连续返回无效回复,将会被标记为下线状态
  7. 选举出领头sentinel,领头sentinel需要半数以上的sentinel同意
  8. 领头sentinel从已下线的的master所有slave中挑选一个,将其转换为master
  9. 让所有的slave改为从新的master复制数据
  10. 将原来的master设置为新的master的从服务器,当原来master重新回复连接时,就变成了新master的从服务器

sentinel会每隔1秒向所有实例(包括主从服务器和其他sentinel)发送ping命令,并且根据回复 判断是否已经下线,这种方式叫做主观下线。当判断为主观下线时,就会向其他监视的sentinel询问,如果超过半数的投票认为已经是下线状态,则会标记为客观下线状态,同时触发故障转移。

能说说redis集群的原理吗?

如果说依靠哨兵可以实现redis的高可用,如果还想在支持高并发同时容纳海量的数据,那就需要redis集群。redis集群是redis提供的分布式数据存储方案,集群通过数据分片sharding来进行数据的共享,同时提供复制和故障转移的功能。

节点

一个redis集群由多个节点node组成,而多个node之间通过cluster meet命令来进行连接,节点的握手过程:

  1. 节点A收到客户端的cluster meet命令
  2. A根据收到的IP地址和端口号,向B发送一条meet消息
  3. 节点B收到meet消息返回pong
  4. A知道B收到了meet消息,返回一条ping消息,握手成功
  5. 最后,节点A将会通过gossip协议把节点B的信息传播给集群中的其他节点,其他节点也将和B进行握手

在这里插入图片描述

槽slot

redis通过集群分片的形式来保存数据,整个集群数据库被分为16384个slot,集群中的每个节点可以处理0-16384个slot,当数据库16384个slot都有节点在处理时,集群处于上线状态,反之只要有一个slot没有得到处理都会处理下线状态。通过cluster addslots命令可以将slot指派给对应节点处理。

slot是一个位数组,数组的长度是16384/8=2048,而数组的每一位用1表示被节点处理,0表示不处理,如图所示的话表示A节点处理0-7的slot。

在这里插入图片描述

当客户端向节点发送命令,如果刚好找到slot属于当前节点,那么节点就执行命令,反之,则会返回一个MOVED命令到客户端指引客户端转向正确的节点。(MOVED过程是自动的)

在这里插入图片描述

如果增加或者移出节点,对于slot的重新分配也是非常方便的,redis提供了工具帮助实现slot的迁移,整个过程是完全在线的,不需要停止服务。

故障转移

如果节点A向节点B发送ping消息,节点B没有在规定的时间内响应pong,那么节点A会标记节点B为pfail疑似下线状态,同时把B的状态通过消息的形式发送给其他节点,如果超过半数以上的节点都标记B为pfail状态,B就会被标记为fail下线状态,此时将会发生故障转移,优先从复制数据较多的从节点选择一个成为主节点,并且接管下线节点的slot,整个过程和哨兵非常类似,都是基于Raft协议做选举

了解Redis事务机制吗?

redis通过MULTI、EXEC、WATCH等命令来实现事务机制,事务执行过程将一系列多个命令按照顺序一次性执行,并且在执行期间,事务不会被中断,也不会去执行客户端的其他请求,直到所有命令执行完毕。事务的执行过程如下:

  • 服务端收到客户端请求,事务以MULTI开始
  • 如果客户端正处于事务状态,则会把事务放入队列同时返回给客户端QUEUED,反之则直接执行这个命令
  • 当收到客户端EXEC命令时,WATCH命令监视整个事务中的key是否有被修改,如果有则返回空回复到客户端表示失败,否则redis会遍历整个事务队列,执行队列中保存的所有命令,最后返回结果给客户端

WATCH的机制本身是一个CAS的机制,被监视的key会被保存到一个链表中,如果某个key被修改,那么REDIS_DIRTY_CAS标志将会被打开,这时服务器会拒绝执行事务。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无休居士

感谢您的支持,我会继续努!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值