The FLARE challenge中的DG Tricks

 

        在数据预处理过程中,大多数顶级团队将强度值裁剪到特定范围内,然后以单位标准差(表6预处理CI & N)将其归一化为[ 0 , 1]或零均值,从而减小了不同个例和中心之间的强度方差。重采样被顶级球队广泛使用,但采样策略各不相同。一些团队将CT重采样到相同的间距,而另一些团队将CT重采样到固定大小的(表6预处理- RS)。特别地,前者可以保持真实的物理分辨率,而后者产生相同大小的输入可以直接发送到网络。在精度方面,两种重采样策略都有达到表4中SOTA性能(例如, T1 (重采样到固定大小))和T9 (重采样到相同的间距)的潜力)。

        大多数顶级团队(表6数据增强)也使用了大量的数据增强,这些都是提高新医疗中心测试用例分割精度的有效方法。没有广泛使用数据增广的团队可能对这些测试案例并不稳健。例如,Center 2中的病例由于来自动脉晚期而不是门静脉期,对脾脏有明显的不均匀强化。如图3 (中心2 )所示,T1在没有大量数据扩充的情况下,即使脾脏有非常清晰的边界,也漏掉了这个脾脏。通过比较,T3和T9,使用广泛的数据增强,可以成功地分割这个脾脏。

        由粗到精的(两级或级联)框架,包括粗定位模型和细分割模型,在顶级球队(表6网络设计- C2F)中是流行的选择。粗模型通常使用参数较少的香草网络(例如, U-Net),而精细模型通常使用较大的网络定制模块(例如,特征金字塔He et al , 2015 ,通道注意力Hu et al , 2018 ,空间构型网络Payer et al , 2019等)。

        许多网络模块可以并入到一个典型的编码器-解码器网络中,其中使用辅助损失是最流行的选择(表6网络设计- AL)。顶级球队探索了几种不同的辅助损失。例如,T8、T9、T10采用深度监督( Dou et al , 2017)。T2在损失函数中引入正则化项,对分割结果施加形状约束。

        本挑战中的分割目标共享两个主要的形态学特征。每个器官都有一个大的体积和一个简单的连通区域。因此,在后处理(表6后处理)中使用连通成分分析可以去除孤立的分割异常值。

总结:

Preprocessing:Intensity Clipping , Normalization, Resampling

Data augmentation:Rotation, Flipping, Scaling, Deformation, Intensity

Network design:Encoder–decoder Network, Residual Block, Channel-wise Attention Block , Anisotropic Operations , Auxiliary Loss(deep supervision)

Postprocessing:Connected Component Analysis, Resampling

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值