Max Flow-Min Cut Theorem

Max Flow-Min Cut Theorem

from wikipedia

In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e. the smallest total weight of the edges which if removed would disconnect the source from the sink.

Prerequisite Knowledge

Networks

A network is a graph with 2 distinctive vertices, namely a source and a sink. We can see it as a transportation network where goods are transported from the production centre(source) to supermarkets(sink) with warehouses which can store the goods temporarily(intermediate vertices).
In this network, each edge has a maximum rate at which goods can be transported, known as capacity c c c of the edge.

Flows

A flow f is the actual rate at which ‘goods’ are transported on the edge a a a. Obviously, for any feasible flow f (from now on, we will only be discussing feasible flow),we have f ( a ) ≤ c ( a ) f(a)\leq c(a) f(a)c(a). For any intermediate vertex x x x, we have flow into the vertex equals to flow out of the vertex, which is known as the conservation condition. For the source, there is only outflow, while for the sink, there is only inflow. Thus, we define a f l o w f flow f flowf as follows:
f  is a real-value function on the network N with source x and sink y such that { f + ( v ) = f − ( v ) ∀ v ∈ I ( the set of intermediate vertices ) f − ( x ) = f + ( y ) 0 ≤ f ( a ) ≤ c ( a ) ∀ a ∈ E ( N ) f\text{ is a real-value function}\\ \text {on the network N with source x and sink y such that}\\ \begin{cases} f^+(v)=f^-(v) &\forall v\in I(\text{the set of intermediate vertices})\\ f^-(x)=f^+(y)\\ 0\leq f(a)\leq c(a)& \forall a\in E(N) \end{cases} f is a real-value functionon the network N with source x and sink y such thatf+(v)=f(v)f(x)=f+(y)0f(a)c(a)vI(the set of intermediate vertices)aE(N)
Obviously, there exists at least one f f f for every network, which is when f ( a ) = 0 f(a)=0 f(a)=0 for every edge a in the network, known as the zeroflow. Now, how do we describe the size of the flow? we proceed to define the value of a flow v a l ( f ) val(f) val(f) as the net flow into the source x x x. In a more rigorous manner, we define
v a l ( f ) = f + ( S ) − f − ( S ) , S ⊆ E , x ∈ S , y ∉ S . val(f)=f^+(S)-f^-(S), S\subseteq E, x\in S, y\notin S. val(f)=f+(S

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值