一、网络流问题
给出一个有向图G=(u,v),两个不同的节点s与t,其中边上的c为该边上能够通过的最大容量(Capacity);求满足条件的从S到T的最大流(MaxFlow);
用c(e)和f(e)分别表示每条边上的容量(Capacity)与流量(Flow);
1.1 s-t cut
s-t cut :是顶点集合V的一个划分,将其分为两个集合,其中s ∈ A 且 t ∈ B;
cut (A, B)的容量capacity:
Minimum Cut Problem:即找到一个割集,使得cap(A,B)最小;
1.2 Flows
flows的两个性质:
(1)容量限制(Capacity Constraints):即流出的水肯定比水管的容量要小;
对于图G中的每一条边e(capacity),都有
(2)除了s和t,其它节点流入量总是等于流出的量;
对于除了s、t的节点流出和流入的大小一样,即(conservation)
flow的大小为 ,即由顶点s出去的流大小总和;
最大流问题:求s-t流量