最大流与最小割Maximum Flow and Minimum Cut

本文详细介绍了网络流问题,特别是最大流和最小割的概念。通过Flow value lemma和Max-Flow Min-Cut Theorem阐述了最大流等于最小割的关系。讨论了Ford-Fulkerson算法求解最大流的过程,并分析了算法的时间复杂度。此外,文章还探讨了如何选择合适的Augmenting Paths以提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、网络流问题

给出一个有向图G=(u,v),两个不同的节点s与t,其中边上的c为该边上能够通过的最大容量(Capacity);求满足条件的从S到T的最大流(MaxFlow);

用c(e)和f(e)分别表示每条边上的容量(Capacity)与流量(Flow);

1.1 s-t cut

s-t cut :是顶点集合V的一个划分,将其分为两个集合,其中s ∈ A 且 t ∈ B;

cut (A, B)的容量capacity:

Minimum Cut Problem:即找到一个割集,使得cap(A,B)最小;

 

1.2 Flows

flows的两个性质:

(1)容量限制(Capacity Constraints):即流出的水肯定比水管的容量要小;

 对于图G中的每一条边e(capacity),都有0\leq f(e)\leq c(e)

(2)除了s和t,其它节点流入量总是等于流出的量;

对于除了s、t的节点流出和流入的大小一样,即\sum _{e\ in\ to\ v}f(e) = \sum _{e\ out \ of \ v}f(e)(conservation)

flow的大小为 v(f) = \sum_{e\ out\ of \ A}c(e),即由顶点s出去的流大小总和;

最大流问题:求s-t流量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值