- 博客(12)
- 收藏
- 关注
原创 [Opencv初探之七]:形态学处理
[Opencv初探之七]:形态学处理1. 膨胀和腐蚀1.1. 膨胀2.2 腐蚀2.开运算、闭运算、形态学梯度、顶帽、黑帽2.1 开运算2.2 闭运算2.3 形态学梯度2.4 顶帽2.5 黑帽1. 膨胀和腐蚀首先需要注意,腐蚀和膨胀是对白色部分(高亮部分)而言的,不是黑色部分。膨胀就是图像中的高亮部分进行膨胀,“领域扩张”,效果图拥有比原图更大的高亮区域。腐蚀就是原图中的高亮部分被腐蚀,“领域被...
2019-07-29 14:19:02
354
原创 [Opencv初探之六]:图像滤波
[Opencv初探之六]:图像滤波1.线性滤波:方框滤波、均值滤波、高斯滤波1.1 方框滤波1.2 均值滤波1.3高斯滤波2.非线性滤波:中值滤波,双边滤波2.1 中值滤波2.2双边滤波 图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。消除图像中的噪声成分叫作图像的平滑化或滤波操作...
2019-07-26 17:24:58
836
1
原创 [Opencv初探之五]:图像通道分离与混合
[Opencv初探之五]:图像通道分离与混合示例代码如下:#include <opencv2/opencv.hpp>#include <iostream> using namespace cv;using namespace std; bool MultiChannelBlending();int main( ){ system("...
2019-07-26 10:58:03
294
原创 [Opencv初探之四]:图像Mask叠加和ROI选取
[Opencv初探之四]:图像Mask叠加和ROI选取1.ROI区域选取2.图像混合叠加,addWeighted()1.ROI区域选取方法一:使用cv:Rect.顾名思义,cv::Rect表示一个矩形区域。指定矩形的左上角坐标(构造函数的前两个参数)和矩形的长宽(构造函数的后两个参数)就可以定义一个矩形区域。imageROI=image(Rect(500,250,logo.cols,logo...
2019-07-25 14:54:06
1413
1
原创 [Opencv初探之三]:点,线,几何图形的绘制
[Opencv初探之三]:点,线,几何图形的绘制1.绘制直线2.绘制点和圆1.绘制直线void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, int thickness = 1, int lineType = LINE_8, int shift = 0);参数列表如下:img:图像....
2019-07-25 10:36:27
1104
原创 [Opencv初探之二]:图像载入,显示和保存
[Opencv初探之二]:图像载入和显示1. 图像载入imread()2.创建显示窗口namewindow()3.显示图片imshow()4.保存图像imwrite()1. 图像载入imread()Mat imread(const string& filename, intflags=1 );第一个参数,const string&类型的filename,填我们需要载入的图片...
2019-07-23 15:09:55
209
原创 [Opencv初探之一]:先言
[Opencv初探之一]:先言1.Opencv组件模块功能2.Opencv编译环境2.1 小型demo一般用g++直接编译2.2 大型工程文件采用cmake进行编译,后续更新1.Opencv组件模块功能【calib3d】——其实就是就是Calibration(校准)加3D这两个词的组合缩写。这个模块主要是相机校准和三维重建相关的内容。基本的多视角几何算法,单个立体摄像头标定,物体姿态估计,立体...
2019-07-23 14:11:17
200
转载 ROI Pooling 与ROI Align
ROI Align 是在Mask-RCNN这篇论文里提出的一种区域特征聚集方式, 很好地解决了ROI Pooling操作中两次量化造成的区域不匹配(mis-alignment)的问题。实验显示,在检测测任务中将 ROI Pooling 替换为 ROI Align 可以提升检测模型的准确性。ROI Pooling过程:1、首先根据后面网络要求的输入尺寸求网格大小,如输入特征图尺寸为5*5,而...
2019-04-20 15:48:34
451
转载 Pooling反向传播
参考博客:https://blog.csdn.net/qq_21190081/article/details/72871704在看卷积神经网络的时候,突然想起来池化是会改变特征图的尺寸的,那反向传播是怎么实现的呢。于是搜了一些博客,感觉上面这个博客写得最清晰直观,就从这个博客里面搬了点东西过来作为笔记。Pooling池化操作的反向梯度传播CNN网络中另外一个不可导的环节就是Poolin...
2019-04-20 15:44:24
1206
原创 机器学习数学基础(1)一最优化方法
1.梯度下降法梯度下降法沿着梯度的反方向进行搜索,利用了函数的一阶导数信息。梯度下降法的迭代公式。 根据函数的一阶泰勒展开,在负梯度方向,函数值是下降的。只要学习率设置的足够小,并且没有到达梯度为0的点处,每次迭代时函数值一定会下降。需要设置学习率为一个非常小的正数的原因是要保证迭代之后的xk...
2019-04-20 10:42:13
717
转载 机器学习引言
机器学习模型(machine learning model)是机器学习算法产出的结果,可以将其看作是在给定输入情况下、输出一定结果的函数(function)\mathtt{F}F。机器学习模型不是预先定义好的固定函数,而是从历史数据中推导出来的。因此,当输入不同的数据时,机器学习算法的输出会发生变化,即机器学习模型发生改变。有监督 VS. 无监督给出一个机器学习问题,首先可以确定...
2019-04-15 18:45:00
621
原创 各种排序算法详解及优劣对比
从时间复杂度和空间复杂度进行考虑。 相关性:排序时是否需要比较元素 稳定性:相同元素排序后是否可能打乱 时间空间复杂度:随着元素增加时间和空间随之变化的函数 一.简单插入排序 插入排序,顾名思义就是基本操作是插入,不断把一个个元素插入一个序列中,最终得到排序序列。插入过程中需要一个个的处理未排序元素,最简单的方法就是按下标处理。处理一个元素时留下一个空...
2019-04-12 15:17:39
7525
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人