N皇后问题

leetcode 51. N 皇后

题目链接

给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。

每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
在这里插入图片描述

示例: 输入: 4
输出: [
[".Q…", // 解法 1
“…Q”,
“Q…”,
“…Q.”],

["…Q.", // 解法 2
“Q…”,
“…Q”,
“.Q…”]
]
解释: 4 皇后问题存在两个不同的解法

递归三部曲

参数和返回值:全局变量保存result保存所有的可能结果,输入当前层数和总共的层数以及棋盘 vector< string >每一层皇后的摆放位置
单层递归逻辑:判断遍历当前层,判断当前位置是否可以摆放皇后
终止条件:当摆放到最后一层时,说明找到了可行解,退出当前递归层

    vector<vector<string>> result;
    //判断当前位置是否可以放皇后
    bool isValid(int n, int row, int colunm, vector<string>& chessboard)
    {
        //判断当前列
        for(int i = 0; i < row; i++)
            if(chessboard[i][colunm] == 'Q')
                return false;
            
        //45°
        for(int i = row - 1, j = colunm - 1; i >= 0 && j >= 0; i--,j--)
            if(chessboard[i][j] == 'Q')
                return false;
        //135°
        for(int i = row - 1, j = colunm + 1; i >= 0 && j >= 0; i--,j++)
            if(chessboard[i][j] == 'Q')
                return false;   
        return true;
    }
    void backTrace(int n, int row, vector<string>& chessboard)
    {
        if(row == n)
        {
            result.push_back(chessboard);
            return;
        }

        //遍历每一行棋牌位置判断是否当前的位置可以放置皇后
        for(int colunm = 0; colunm < n; colunm++)
        {
            if(isValid(n, row, colunm, chessboard))
            {
                chessboard[row][colunm] = 'Q';
                backTrace(n, row + 1, chessboard);
                chessboard[row][colunm] = '.';
            }
        }
    }
    vector<vector<string>> solveNQueens(int n) {
        vector<string> chessboard(n,string(n,'.'));
        backTrace(n, 0, chessboard);
        return result;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值