leetcode 51. N 皇后
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。
每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
示例: 输入: 4
输出: [
[".Q…", // 解法 1
“…Q”,
“Q…”,
“…Q.”],
["…Q.", // 解法 2
“Q…”,
“…Q”,
“.Q…”]
]
解释: 4 皇后问题存在两个不同的解法
递归三部曲
参数和返回值:全局变量保存result保存所有的可能结果,输入当前层数和总共的层数以及棋盘 vector< string >每一层皇后的摆放位置
单层递归逻辑:判断遍历当前层,判断当前位置是否可以摆放皇后
终止条件:当摆放到最后一层时,说明找到了可行解,退出当前递归层
vector<vector<string>> result;
//判断当前位置是否可以放皇后
bool isValid(int n, int row, int colunm, vector<string>& chessboard)
{
//判断当前列
for(int i = 0; i < row; i++)
if(chessboard[i][colunm] == 'Q')
return false;
//45°
for(int i = row - 1, j = colunm - 1; i >= 0 && j >= 0; i--,j--)
if(chessboard[i][j] == 'Q')
return false;
//135°
for(int i = row - 1, j = colunm + 1; i >= 0 && j >= 0; i--,j++)
if(chessboard[i][j] == 'Q')
return false;
return true;
}
void backTrace(int n, int row, vector<string>& chessboard)
{
if(row == n)
{
result.push_back(chessboard);
return;
}
//遍历每一行棋牌位置判断是否当前的位置可以放置皇后
for(int colunm = 0; colunm < n; colunm++)
{
if(isValid(n, row, colunm, chessboard))
{
chessboard[row][colunm] = 'Q';
backTrace(n, row + 1, chessboard);
chessboard[row][colunm] = '.';
}
}
}
vector<vector<string>> solveNQueens(int n) {
vector<string> chessboard(n,string(n,'.'));
backTrace(n, 0, chessboard);
return result;
}