看到这题,是个OIer应该都能想到最小割,然后条件反射写最大流,然后敲ISAP,Dinic,.......然后TLE掉了= =
= =
本蒟蒻就是这样,然后去ym了各种题解,最后发现这是一个特殊的最大流模型,可以转化为最短路。现在讲一下详细建图方法。详见《两极相通—浅析最大最小定理在信息学竞赛中的应用》by 周冬
显然这个图是一个平面图,并且s,t在两个没有边界的平面上,这样的图称为s-t平面图,s-t上的最大流=最小割=对偶图上的最短路。
那么什么是对偶图呢,就是把每个平面当作点,平面与平面的公共边变成点与点之间的双向边,如何区分对偶图的s',t'呢,把原图的s,t连起来,构成一个新的平面,新平面视作s‘,无限面视作t',注意对偶图中s',t'之间的边要删去。形象一点,上个图(源自周冬论文):
很显然最小割变成了新图的最短路(证明见论文),原图的每一可行割,对应新图的每一可行路径,问题至此转化为对偶图上最短路。code:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
struct hp{
int v,c;
}a[6000200];
int queue[4000200];
bool exist[2000200];
int point[2000200],next[6000200],dis[2000020];
int n,m,e=1;
void add(int u,int v,int c)
{
e++; a[e].v=v; a[e].c=c; next[e]=point[u]; point[u]=e;
e++; a[e].v=u; a[e].c=c; next[e]=point[v]; point[v]=e;
}
int spfa()
{
int head,tail,u,i;
memset(exist,false,sizeof(exist));
memset(dis,127/3,sizeof(dis));
head=0; tail=1; queue[tail]=0; dis[0]=0; exist[0]=true;
while (head!=tail)
{
head=head%4000200+1;
u=queue[head]; exist[u]=false;
for (i=point[u];i;i=next[i])
{
if (dis[a[i].v]>dis[u]+a[i].c)
{
dis[a[i].v]=dis[u]+a[i].c;
if (!exist[a[i].v])
{
tail=tail%4000200+1;
exist[a[i].v]=true;
queue[tail]=a[i].v;
}
}
}
}
return dis[2*(n-1)*(m-1)+1];
}
int main()
{
int i,j,x,ans=2100000000;
scanf("%d%d",&n,&m);
for (i=1;i<=n;++i)
for (j=1;j<=m-1;++j)
{
scanf("%d",&x);
if (n==1)
ans=min(ans,x);
if (i==1)
add(j,2*(n-1)*(m-1)+1,x);
if (i>1&&i<n)
add((m-1)*2*(i-1)+j,(m-1)*(2*(i-1)-1)+j,x);
if (i==n)
add(0,(m-1)*(2*(n-1)-1)+j,x);
}
for (i=1;i<=n-1;++i)
for (j=1;j<=m;++j)
{
scanf("%d",&x);
if (m==1)
ans=min(ans,x);
if (j==1)
add(0,(m-1)*(2*i-1)+1,x);
if (j>1&&j<m)
add((m-1)*(2*(i-1))+j-1,(m-1)*(2*i-1)+j,x);
if (j==m)
add((m-1)*(2*i-1),2*(n-1)*(m-1)+1,x);
}
for (i=1;i<=n-1;++i)
for (j=1;j<=m-1;++j)
{
scanf("%d",&x);
add((m-1)*(2*i-1)+j,2*(m-1)*(i-1)+j,x);
}
if (n==1&&m==1)
printf("0\n");
else
{
if (n==1||m==1) printf("%d\n",ans);
else printf("%d\n",spfa());
}
}