cnn、rnn和lstm的区别

本文探讨了CNN、RNN两种神经网络模型的特性,CNN擅长图像特征识别,通过卷积操作实现累加效果;而RNN则采用递归结构,适合处理动态序列数据。此外,还提到了LSTM与RNN的区别,并推荐了相关文章以深入理解这些概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们都知道cnn和lstm的本质区别是有无记忆功能,也就是联想的能力,cnn只能够识别出一部分的特征,而lstm可以根据上下文得出结论。
但是我产生了一个问题,如何才能从他们的流程中找到区别,问什么不在RNN上直接加一个dropout层,或者将cnn改为时间序列。
首先看一下cnn、Rnn和lstm的原理图:
如下
cnn:

在这里插入图片描述

RNN:

在这里插入图片描述

lstm:

在这里插入图片描述
首先我想谈一下cnn与RNN,为什么不给cnn一个递归?而RNN递归就可以很好的解决问题:
我的思考是,cnn是对每一层卷积的结果的累加效果。并且cnn实际上对处理图片有着很大的作用,其实质上是对某一个特定的特征进行识别。
而RNN则是不断更新的过程,不太准确的说就是一个动态表。
关于lstm和rnn的区别请看下面这位大佬的博文:
https://blog.csdn.net/lanmengyiyu/article/details/79941486传送门

cnn和lstm的区别:
大佬的这篇文章实在是写的太棒了:
我们一起来看一下吧
https://www.sohu.com/a/230801110_609569

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值