二叉树的链式结构。

二叉树的链式结构创建(创建时采用先序遍历顺序创建)、求二叉树的深度、求二叉树的叶子节点、求二叉树的总节点、先序遍历、中序遍历、后序遍历。


Status.h

#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int Status;

BiTree.h

typedef struct BiTNode {
    ElemType data;//数据域
    struct BiTNode *lchild,*rchild;//指针域
}BiTNode,*BiTree;

void CreateBiTree(BiTree& T) {//先序创建二叉树
    char ch;
    cin >> ch;//输入数据
    if(ch == '#')
    {
        T = NULL;
    } else {
        T = new BiTNode;//新建一个节点
        T->data = ch;//数据域为输入的内容
        CreateBiTree(T->lchild);//递归创建左子树
        CreateBiTree(T->rchild);//递归创建右子树
    }
}

int Depth(BiTree T)//计算二叉树深度
{
    int m,n;
    if(T == NULL) {//如果是空树,则返回0
        return 0;
    } else {
        m = Depth(T->lchild);//递归计算左子树的深度记为m
        n = Depth(T->rchild);//递归计算右子树的深度记为n
        if(m > n) {
            return m + 1;
        } else {
            return n + 1;
        }
    }
}

int NodeCount(BiTree T) {
    if(T == NULL) {//空的返回0
        return 0;
    } else {
        return NodeCount(T->lchild) + NodeCount(T->rchild) + 1;
    }
}

int LeavesNodeCount(BiTree T)//
{
	if(!T) return 0;
	else if(!T->lchild&&!T->rchild) return 1;
	else return LeavesNodeCount(T->lchild)+LeavesNodeCount(T->rchild);
}

void PreOrderTraverse(BiTree T) {//先序遍历
    if(T) {
        cout << T->data << " ";
        PreOrderTraverse(T->lchild);
        PreOrderTraverse(T->rchild);
    }
}

void InOrderTraverse(BiTree T) {//中序
    if(T) {
        InOrderTraverse(T->lchild);
        cout << T->data << " ";
        InOrderTraverse(T->rchild);
    }
}

void PostOrderTraverse(BiTree T) {//后
    if(T) {
        PostOrderTraverse(T->lchild);
        PostOrderTraverse(T->rchild);
        cout << T->data << " ";
    }
}


main.cpp

#include <iostream>
using namespace std;
#include "Status.h"
typedef char ElemType;
#include "BiTree.h"

int main()
{
	BiTree T;
	CreateBiTree(T);
	cout<<"二叉树的深度为:"<<Depth(T)<<endl;
	cout<<"二叉树中结点个数为:"<<NodeCount(T)<<endl;
	cout<<"二叉树中叶子结点个数为:"<<LeavesNodeCount(T)<<endl;
	cout<<"先序遍历:";
	PreOrderTraverse(T);
	cout<<"\n中序遍历:";
	InOrderTraverse(T);
	cout<<"\n后序遍历:";
	PostOrderTraverse(T);
	cout<<endl;
}



测试:



构建如图所示的二叉树进行测试:



按照先序遍历的输入顺序进行输入。


使用二叉树链式结构设计求解非空二叉树中最大节点值的算法通常涉及到深度优先搜索(DFS),尤其是递归的方法。下面是一个简单的C语言实现: ```c #include <stdio.h> #include <stdlib.h> // 定义二叉树结构 typedef struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; } TreeNode; // 辅助函数,用于递归查找最大值 int findMaxValue(TreeNode* node) { // 如果当前节点为空,返回无穷小作为边界条件 if (node == NULL) { return INT_MIN; } // 递归找到左右子树的最大值 int leftMax = findMaxValue(node->left); int rightMax = findMaxValue(node->right); // 返回当前节点值与左右子树较大者之间的较大值 return node->val > leftMax && node->val > rightMax ? node->val : leftMax > rightMax ? leftMax : rightMax; } // 主函数 int main() { // 创建并初始化一个示例二叉树 TreeNode* root = malloc(sizeof(TreeNode)); root->val = 10; root->left = malloc(sizeof(TreeNode)); root->left->val = 5; root->left->right = malloc(sizeof(TreeNode)); root->left->right->val = 15; root->right = malloc(sizeof(TreeNode)); root->right->val = 20; // 调用辅助函数寻找最大值 int maxNodeVal = findMaxValue(root); printf("The maximum value in the binary tree is: %d\n", maxNodeVal); // 清理内存 free(root->left->right); free(root->left); free(root->right); free(root); return 0; } ``` 在这个例子中,`findMaxValue`函数通过递归遍历整棵树,比较每个节点的值和其子树的最大值,最后返回整个树的最大值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值