Pytorch深度学习——多分类问题、MNIST训练实例(B站刘二大人P9学习笔记)

目录

1 Softmax层介绍

2 选择Loss函数

2.1 NLLLoss损失函数

2.2 CrossEntropyLoss损失函数

3 MNIST训练实例代码详解

3.1 准备数据集

3.2 建立模型

3.3 构建损失函数和优化器

3.4 训练+测试

3.5 完整代码+运行结果

4 遇到问题


        本节课以深度学习经典数据集MNIST数据集为例展开,如图所示是MNIST数据集的一张样例图,每个方框中是手写的数字。而我们需要做的事情就是:根据数据集中的数据,利用深度学习,让机器能够自己识别每个方框中的数字。

        数字一共有0~9一共10种类别,利用深度学习来识别十种数字的类别,这就是多分类问题

         之前在糖尿病数据集的学习中,我们遇到的是二分类问题,也就是病人一共只有患病(y=1)和不患病(y=0)两种分类,知道y=1的概率,那y=0的概率就等于1-P(y=1),比较两个概率的大小,很容易就可以区分该病人属于哪一个分类。

         而多分类问题不同,以MNIST数据集为例,需要计算出每个方框属于不同数字的10个概率,这10个概率需要满足:

  1.         P\left ( y=i \right )> 0
  2.        \sum_{i=0}^{9}P(y=i)=1

        因此多分类问题我们通常选用Softmax函数作为神经网络的最后一层。


 1 Softmax层介绍

         Softmax函数公式如下:其中 Z_{i} 表示的是线性层输出的数值;对每层的线性层求指数,之后再计算每层指数值占总层数指数值之和的比例,就是计算出的该层次的概率。

    注意: 

  •          首先先对线性层输出的数值求指数,是为了保证计算出的数值一定是一个大于0的数,保证多分类问题中的条件1:P\left ( y=i \right )> 0
  • 计算每个层次占总层次之和的比例,是为了保证多分类问题中的条件2:\sum_{i=0}^{9}P(y=i)=1

 一个简单的例子如下图所示:

2 选择Loss函数

2.1 NLLLoss损失函数

         NLLLoss损失函数如下图所示:(\widehat{y} 最大的对应的 y 值为1,其余都为0.)

          对应的损失函数代码如下所示:

import numpy as np
y = np.array([1, 0, 0])
z = np.array([0.2, 0.1, -0.1])
y_pred = np.exp(z) / np.exp(z).sum()
loss = (- y * np.log(y_pred)).sum()
print(loss)

2.2 CrossEntropyLoss损失函数

       CrossEntropyLoss损失函数是将Softmax层和NLLLoss损失函数整合在一。CrossEntropyLoss损失函数如下图所示:

        注意:使用CrossEntropyLoss损失函数时,神经网络的最后一层不需要做激活,(也就是不用经过Softmax层的计算),直接输入到CrossEntropyLoss损失函数中就可以,因为CrossEntropyLoss损失函数包含的Sofrmax层。

        对应的损失函数代码如下所示:

import torch
y = torch.LongTensor([0])
z = torch.Tensor([[0.2, 0.1, -0.1]])
criterion = torch.nn.CrossEntropyLoss()
loss = criterion(z, y)
print(loss)

3 MNIST训练实例代码详解

        我们之前学习的案例中,输入x都是一个向量;在MNIST数据集中,我们需要输入的是一个图像,怎样,图像怎么才能输入到模型中进行训练呢?一种方法是我们可以把图像映射成一个矩向量,再输入到模型中进行训练。

        怎样将一个图像映射成一个向量?

        如图所示是MNIST数据集中一个方格的图像,它是由28x28=784个像素组成,其中越深的地方数值越接近0,越亮的地方数值越接近1。

         因此可以将此图像按照对应的像素和数值映射成一个28x28的一个矩阵,如下图所示:


3.1 准备数据集

具体代码如下:

# 准备数据集
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
#均值、标准差
    transforms.Normalize((0.1307, ), (0.3081, ))
])
train_dataset = datasets.MNIST(root='../dataset/mnist/',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(test_dataset,
                         shuffle=False,
                         batch_size=batch_size)

 注:

  1. 图像张量:灰度图(黑白图像)就是一个单通道的图像,彩色图像是多通道的图像(分别是R,G,B三个通道),一个通道具有高度——H,宽度——W,通道由——C表示。
  2. transform作用:再pytorch中读取图像时使用的是python的PIL,而由PIL读取的图像一般是由W x H x C组成,而在pytorch中为了进行更高效的图像处理,需要图像由C x W x H这样的顺序组成,因此transform的作用就是将PIL读取的图像顺序转换成C x W x H;像素值从0~255转换成0~1。


3.2 建立模型

        全连接网络中,要求输入的是一个矩阵,因此需要将1x28x28的这个三阶的张量变成一个一阶的向量,因此将图像的每一行的向量横着拼起来变成一串,这样就变成了一个维度为1x784的向量,一共输入N个手写数图,因此,输入矩阵维度为(N,784)。这样就可以设计我们的模型,如下图所示:

 具体代码:

# 设计模型
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)


model = Net()

3.3 构建损失函数和优化器

  1.   这里我们选择CrossEntropyLoss损失函数;
  2.   因为训练数据集有些大,所以优化器可以加上冲量参数。

  具体代码:

# 构建损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

3.4 训练+测试

  1. 为了方便,这里我们将一轮训练循环封装成函数;
  2. test函数不需要反向传播,只用计算正向的就可以;
  3. torch.max的返回值有两个,第一个是每一行的最大值是多少,第二个是每一行最大值的下标(索引)是多少;
  4.  torch.no_grad() :不需要计算梯度;
  5. Python 各种下划线都是啥意思_、_xx、xx_、__xx、__xx__、_classname_ - 知乎

具体代码:

# 定义训练函数
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        # 前馈+反馈+更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        # 每300次迭代输出一次
        if batch_idx % 300 == 299:
            print('[%d,%5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


# 定义测试函数
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            # 沿着第一维度找最大值的下标
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set:%d %%' % (100 * correct / total))



# 实例化训练和测试
if __name__ == '__main__':
    # 训练10轮
    for epoch in range(10):
        train(epoch)
        test()

3.5 完整代码+运行结果

完整代码:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

# 准备数据集
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])
train_dataset = datasets.MNIST(root='../dataset/mnist/',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(test_dataset,
                         shuffle=False,
                         batch_size=batch_size)


# 设计模型
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)


model = Net()

# 构建损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# 定义训练函数
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        # 前馈+反馈+更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d,%5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


# 定义测试函数
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set:%d %%' % (100 * correct / total))



# 实例化训练和测试
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

运行截图如下:

4 遇到问题

运行时遇到警告:The given NumPy array is not writeable,and PyTorch does not support non-writeable tensor,如图:

 按照路径找到mnist.py文件:

 点开修改:删除copy+False,就没有报错,程序可以继续运行了

  • 4
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 14
    评论
PyTorch是一个开源的机器学习库,它提供了丰富的工具和函数,用于构建和训练深度学习模型。深度学习分类是指使用神经网络对数据进行分类的任务,其中PyTorch可以帮助我们实现这一目标。 首先,我们可以使用PyTorch内置的数据集类来加载和准备我们的数据,例如ImageFolder类可以用来加载图像数据集,而对于其他类型的数据集,我们也可以自定义数据集类来进行加载。之后,我们可以使用PyTorch提供的网络模型,如ResNet、VGG等,或者自己创建神经网络模型来进行分类任务。 在模型构建完成后,我们可以使用PyTorch提供的优化器和损失函数来训练我们的模型。通过调用优化器的step方法,可以对模型的参数进行优化更新,而损失函数则可以帮助我们计算模型预测结果与真实标签之间的误差,从而指导模型的优化过程。 在训练过程中,我们还可以使用PyTorch提供的工具来对模型进行评估,如计算准确率、查准率和查全率等指标。另外,PyTorch还提供了可视化工具,如TensorBoard,可以帮助我们直观地观察模型的训练过程,并及时发现模型的问题。 综上所述,PyTorch提供了丰富的工具和函数,可以帮助我们方便地构建、训练和评估深度学习模型,从而完成对数据集分类任务。通过使用PyTorch,我们可以更加高效地进行深度学习分类的工作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习CV的研一小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值