
深度学习机器学习

文章平均质量分 66
深度学习技术的方案提供
优惠券已抵扣
余额抵扣
还需支付
¥79.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
XD742971636
https://www.dong-blog.fun/
展开
-
【知识点】语义分割任务中有哪些损失函数?
本文详细介绍了语义分割任务中常用的损失函数 ,并重点加入了边界感知损失(Boundary Loss) ,以解决图像分割中常见的边界模糊问题。原创 2025-05-16 11:23:56 · 32 阅读 · 0 评论 -
【知识点】语义分割任务的模型输出形状是什么样?
在PyTorch中,语义分割模型的输出形状通常为 (N, C, H, W),其中 N 表示批处理大小,C 是类别数量,H 和 W 分别是输出特征图的高度和宽度。例如,对于4张512x512的图像和10类语义分割任务,输出形状为 (4, 10, 512, 512)。模型输出的是每个像素的类别得分(logits),可以通过 softmax 转换为概率分布,再通过 argmax 得到每个像素的预测类别。真实标签的格式为 (N, H, W),表示每个像素的类别编号。模型输出可以通过颜色映射表可视化,生成彩色图像以展原创 2025-05-16 11:16:09 · 37 阅读 · 0 评论 -
【知识点】大模型面试题汇总(持续更新)
Decoder 像一名“提问者”,Encoder 像一本“百科全书”。Cross-Attention 是 Decoder 根据当前生成状态(Query),从百科全书(K/V)中检索相关内容的过程。在问题17里有一句代码:也是多头注意力qkv那一套,只不过这里encoder出来的百科全书作为KV了。tgt 是来自decoder的。这就是交叉注意力。# Step 2: Cross-Attention(Query 来自 decoder,K/V 来自 encoder)原创 2025-05-15 17:30:18 · 126 阅读 · 0 评论 -
【知识点】GPT模型自回归生成Token的详细过程
Transformer的自回归生成过程是一个逐步展开的动态计算过程,主要包括初始化阶段和逐步生成阶段。在初始化阶段,输入准备和内存预分配为后续生成奠定基础。逐步生成阶段通过计算查询、键和值(QKV),更新缓存,进行因果注意力计算,并预测下一个token。关键机制如KV缓存和动态掩码确保了计算的高效性和严格因果性。此外,不同的概率采样方法(如贪心搜索、温度采样和Top-p采样)影响生成结果的确定性和多样性。整个过程严格遵循自回归性质,通过并行计算优化实现高效生成。原创 2025-05-15 13:27:02 · 43 阅读 · 0 评论 -
【知识点】transformer的qkv计算如何建立上下文感知?
Transformer自注意力机制通过动态计算词与词之间的关系,克服了传统序列模型的局限性。以句子"The cat sat on the mat"为例,首先将每个词映射为向量并添加位置编码,生成查询(Q)、键(K)和值(V)矩阵。通过点积计算注意力分数,经过缩放和Softmax归一化后,加权聚合值向量,生成每个词的上下文感知表示。多头注意力机制进一步扩展了模型的表达能力,允许同时关注不同的语义子空间。与传统RNN相比,Transformer能够直接建模长距离依赖,且支持并行计算,显著提升原创 2025-05-15 10:50:32 · 26 阅读 · 0 评论 -
【知识点】Transformer自注意力计算为什么要除以√q_k 进行Scaling?
在 Scaled Dot-Product Attention 中,除以 $\sqrt{d_k}$ 的核心目的是通过调整点积结果的方差为1,避免输入到 softmax 的值过大导致梯度消失。假设查询向量 $Q$ 和键向量 $K$ 的每个元素是独立同分布的随机变量,均值为 0,方差为 1,点积 $Q \cdot K$ 的方差为 $d_k$。将点积结果除以 $\sqrt{d_k}$ 后,方差被归一化为 1。这种缩放操作不仅避免了 softmax 输入值过大导致的梯度消失问题,还使得不同维度的注意力分数分布一致,从原创 2025-05-15 09:59:04 · 27 阅读 · 0 评论 -
VLM Qwen2.5VL GRPO训练微调 EasyR1 多机多卡训练(2)
脚本首先设置分布式训练参数(如节点数、GPU数量、主节点IP等),然后根据当前节点的RANK值区分主节点和工作节点:主节点启动Ray head服务并等待所有工作节点连接,工作节点则连接到主节点。当集群就绪后,主节点会启动训练脚本(qwen2_5_vl_7b_grpo_train.sh),同时集成了SwanLab实验跟踪工具,支持云端和本地训练日志记录。verl 依托于 Ray, 所以多机多卡使用需要使用Ray进行训练,Ray和torchrun的原理也差不多。原创 2025-05-02 16:09:02 · 123 阅读 · 0 评论 -
VLM-R1 训练:max_anyres_num 参数与多图处理机制解析
通过这次深入分析,我们了解到是控制 InternVL 图像分块数量、平衡细节与资源消耗的关键参数,合理调整它可以有效缓解显存压力。同时,我们也确认了 VLM-R1 框架具备完善的多图像样本处理能力。希望这些信息能帮助大家在训练自己的多模态模型时,更加得心应手!原创 2025-05-01 17:06:42 · 124 阅读 · 0 评论 -
如何强制关闭Qwen/Qwen3的思考功能
也就相当于enable_thinking参数你传不传这里都是默认enable_thinking就是false,模板永远给空。在之前的文章里,教学了部署和请求的时候去给参数从而关闭thinking:https://www.dong-blog.fun/post/2053。翻译出来就是,如果enable_thinking被定义了,而且enable_thinking参数是false,那么think直接给空。但是还是麻烦,能不能默认就把这个thinking给关闭,从代码层面直接关闭?原创 2025-04-30 11:45:36 · 1021 阅读 · 1 评论 -
InternVL 3的技术深度分析,代码与原理
我将对InternVL 3进行更深入的技术分析,结合代码和公式来详细阐述其核心技术、训练方法和推理部署。原创 2025-04-18 18:54:04 · 154 阅读 · 0 评论 -
vllm 离线推理Qwen2.5-VL-Instruct,API部署,支持max_pixels
使用这里的最新镜像:启动环境more。原创 2025-03-24 11:11:05 · 261 阅读 · 0 评论 -
【LLM】由LayerNorm向RMSNorm
归一化层作为深度神经网络的核心组件,直接影响模型的训练动力学与泛化能力。本文从数学推导与计算图视角系统解析LayerNorm与RMSNorm的算法差异,结合Transformer架构演进规律,揭示大语言模型时代归一化技术的工程选择策略。通过理论分析与实验数据交叉验证,阐明RMSNorm在百亿参数级模型中的性能优势及其物理意义。more。原创 2025-02-13 17:03:00 · 89 阅读 · 0 评论 -
自抗扰控制(ADRC)代码,带宽法,控制倒立摆
自抗扰控制(Active Disturbance Rejection Control)由韩京清教授提出,其核心思想是将系统内外部的扰动统一视为"总扰动",通过扩张状态观测器实时估计并补偿。:生成过渡过程并提取微分信号:实时估计系统状态和总扰动:综合误差生成控制量。原创 2025-02-13 15:12:43 · 296 阅读 · 0 评论 -
pix2pix mmgeneration通用场景黑白图片上色模型训练,Docker
more。原创 2025-01-17 15:07:59 · 355 阅读 · 0 评论 -
Android Java Ubuntu系统如何编译出 libopencv_java4.so
【代码】Android Java Ubuntu系统如何编译出 libopencv_java4.so。原创 2024-12-20 13:48:50 · 331 阅读 · 0 评论 -
背景移除,主体物抠图模型 RMBG-2.0:最佳一键去背景模型
准确性:高精度地分离前景和背景。效率:优化以实现快速推理时间。多功能性:在各种图像类别(包括通用股票图片、电子商务、游戏和广告内容)中表现良好。内容安全:确保生成的内容安全且适当。合法授权的数据集:训练数据完全合法,避免法律问题。偏见缓解:训练数据中平衡了性别、种族和残疾人的代表性。原创 2024-11-14 10:04:23 · 871 阅读 · 0 评论 -
Qwen2.5-Coder-32B-Instruct Docker 部署openai接口
openwebui这个镜像里面是装了ollama的,直接进容器打开。这是量化后的模型,🈷约20G大小。吃62G显存,还需要max-model-len降到这么低,太大了。(img-yryWF50B-1731466165927)](img-gh4hPApW-1731466165928)](img-jHBWQPYw-1731466165928)]下载过程中如果网络突然慢了,那就断开,重新下,这个指令本身支持断点续传。Ollama默认绑定127.0.0.1端口11434。原创 2024-11-13 10:49:32 · 1354 阅读 · 0 评论 -
如何控制vLLM的显存,显存爆炸,显存溢出,qwen2.5显存
vLLM是一个用于加速大语言模型推理的开源库,主要通过智能批处理和显存优化技术,使大模型在多GPU环境中高效运行。vLLM采用了动态KV缓存机制,这使得它在多请求场景中能够显著提升吞吐量和响应速度。原创 2024-11-07 14:14:11 · 3228 阅读 · 0 评论 -
Qwen2.5 vs Llama3.1 对比
Qwen2.5通过其多种版本和增强功能,展现了在通用语言处理、编程、数学推理等多个领域的强大能力。无论是在技术提升还是在应用生态的广泛支持上,Qwen2.5都为开发者和研究人员提供了强有力的工具,预示着AI领域的新一轮创新浪潮。原创 2024-11-05 16:51:20 · 1420 阅读 · 0 评论 -
Meta更新了MobileLLM
模型地址:https://huggingface.co/collections/facebook/mobilellm-6722be18cb86c20ebe113e95。适用于移动设备的小型LLM,大小分别为125M、350M、600M、1B。Meta更新了MobileLLM。原创 2024-11-05 14:03:49 · 123 阅读 · 0 评论 -
hertz-dev:斯坦福开源的音频模型
官方介绍:https://si.inc/hertz-dev/hertz-dev:斯坦福开源的音频模型。音频端到端基础模型,延迟120ms。原创 2024-11-05 14:03:14 · 152 阅读 · 0 评论 -
Docker lmdeploy 快速部署Qwen2.5模型openai接口
官方教程文档:https://github.com/InternLM/lmdeploy/blob/main/docs/zh_cn/llm/api_server.md。我已经把模型下载到/data/xiedong/Qwen2.5-72B-Instruct-GPTQ-Int4。浏览器访问接口文档:http://101.136.8.66:23333。该API类似于OpenAI的Completion API。该API类似于OpenAI的Completion API。获取详细API规范。获取详细API规范。原创 2024-11-05 10:54:02 · 807 阅读 · 0 评论 -
Docker vLLM 快速部署 Qwen2.5
平均时间: 1.81 秒。原创 2024-11-04 21:27:10 · 696 阅读 · 0 评论 -
Docker LLama-Factory vLLM 快速部署Meta-Llama-3.1-70B-Instruct
more。原创 2024-11-04 20:51:48 · 668 阅读 · 0 评论 -
Docker部署Meta-Llama-3.1-70B-Instruct API openai格式,vLLM速度对比
max-model-len:这个参数表示模型的上下文长度,即模型可以处理的最大输入长度。如果用户输入的长度超过这个限制,模型通常会报告错误,表明输入过长。为了符合该限制,通常需要对输入进行截断。max_num_seqs:这个参数指定了在同一时间内可以并行处理的请求数量,也就是批处理中的序列数量。如果这个值设置得过高,可能会消耗更多的内存,因此降低它可以帮助节省内存。相差很大,Vllm快得多。平均时间: 16.79 秒。平均时间: 3.31 秒。平均时间: 1.63 秒。原创 2024-11-04 20:14:07 · 486 阅读 · 0 评论 -
LLama-Factory 快速部署Qwen2.5模型
【代码】LLama-Factory 快速部署Qwen2.5模型。原创 2024-11-04 15:54:50 · 902 阅读 · 0 评论 -
modelscope下载Qwen2.5 72B 模型方法
more。原创 2024-11-03 14:00:59 · 831 阅读 · 0 评论 -
【深度学习】InstantIR:图片高清化修复
InstantIR(Instant Image Restoration)是一种创新的单张图像修复方法。它通过利用即时生成的参考信息,实现对受损图像的高质量修复。得益于先进的生成模型和视觉编码器,InstantIR 不仅能够恢复图像细节,还支持通过文本提示进行性能增强,甚至实现定制化的图像编辑。原创 2024-11-03 14:00:28 · 251 阅读 · 0 评论 -
【深度学习】InstantIR:图片高清化修复
InstantIR(Instant Image Restoration)是一种创新的单张图像修复方法。它通过利用即时生成的参考信息,实现对受损图像的高质量修复。得益于先进的生成模型和视觉编码器,InstantIR 不仅能够恢复图像细节,还支持通过文本提示进行性能增强,甚至实现定制化的图像编辑。原创 2024-11-03 13:16:09 · 513 阅读 · 0 评论 -
【深度学习】PromptFix:多功能AI修图
PromptFix的设计初衷是让用户通过简单的文本提示,就能完成复杂的图像处理任务。🎨图像上色:为黑白或灰度图像添加逼真的色彩。🧹对象移除:从图像中删除不需要的物体或元素。🌫️去雾:消除图像中的雾气,提高清晰度。💨去模糊:对模糊的图像进行锐化处理。🖼️水印移除:去除图像上的水印或标志。❄️去雪:清理下雪场景中的雪花干扰。🌙弱光增强:提升在低光照条件下拍摄的图像质量。基于扩散模型的骨干网络,PromptFix在纠正图像缺陷的同时,能够很好地保留原始图像的结构和细节。原创 2024-11-03 13:13:59 · 543 阅读 · 0 评论 -
训练和部署Qwen2.5,实战教程步骤,训练qwen2.5教程,vLLM,Open WebUI,LLaMA-Factory
Qwen2.5多规模模型:提供从 0.5B 到 72B 参数规模的模型,满足不同需求。强大的语言理解和生成能力:在文本生成、对话、问答等任务上表现出色。开源友好:模型和代码在上公开,方便开发者下载和使用。通过本教程,您应该已经了解了如何下载、部署和训练 Qwen2.5 模型。无论是直接调用 API,还是通过前端界面与模型交互,都可以帮助您更好地利用 Qwen2.5 的强大功能。如果您需要对模型进行微调,LLaMA-Factory 提供了便捷的工具链,助您快速实现自定义需求。原创 2024-11-01 16:31:20 · 1788 阅读 · 0 评论 -
【深度学习】DreamClear:提升图片分辨率的模型
DreamClear是由发布的一个开源项目,旨在通过高容量的模型和隐私安全的数据集构建方法,实现真实世界图像的高效修复。该项目在 NeurIPS 2024 上发表,论文题为《DreamClear: High-Capacity Real-World Image Restoration with Privacy-Safe Dataset Curation》。原创 2024-11-01 11:17:10 · 453 阅读 · 0 评论 -
谷歌公布NotebookLM技术细节
NotebookLM 是 Google DeepMind 开发的一款创新工具,旨在将用户提供的文档内容转化为生动的对话形式。通过先进的音频生成技术,NotebookLM 不仅能够生成自然流畅的语音,还能模拟多位说话人的互动,使复杂的信息更加易于理解和消化。NotebookLM 通过先进的音频生成技术,实现了高质量、多说话人的自然对话生成,极大地提升了 AI 的交互性和实用性。原创 2024-11-01 11:12:32 · 307 阅读 · 0 评论 -
Recraft V3:新的高质量AI绘画模型
当前排行榜第一!原创 2024-11-01 11:04:21 · 376 阅读 · 0 评论 -
文生图排行榜单
在当今人工智能生成图片领域,模型的质量和表现成为了用户关注的重点。Artificial Analysis提供了一个,对不同的AI图像生成模型进行了基于Image Arena众包偏好的质量评估。这一平台不仅展示了多种模型的排名,还为用户提供了参与排名评选的机会,通过提交作品来查看自己喜欢的模型在排行榜中的表现。原创 2024-11-01 10:58:47 · 410 阅读 · 0 评论 -
合并SDXL的模型和Lora权重,合并为一个文件
完整教程:https://qq742971636.blog.csdn.net/article/details/143229120。目的是为了加速,SDXL模型,Lora模型,分别加载比较耗时,合并到一起就好了。合并SDXL的模型和Lora权重,合并为一个文件。原创 2024-10-28 16:44:19 · 244 阅读 · 0 评论 -
stable diffusion webui API调用示例,调用参数,override_settings参数
有几种方法可以将此值添加到您的有效负载中,但我这样做了。我将使用“sd_model_checkpoint”和“CLIP_stop_at_last_layers”进行演示。我的疑问是如何用tensorRT的设置,这是需要使用override_settings的。所有参数其实是和自己安装的东西有关,在接口里可以直接看那些参数可以用。这个接口就是 GET /sdapi/v1/options。参数就可以访问接口了,同时/docs就是接口文档。执行webui,执行的时候带有。原创 2024-10-28 16:14:17 · 539 阅读 · 0 评论 -
构建最新的LLaMA-Factory镜像
安装 AutoGPTQ:https://www.dong-blog.fun/post/1737#1.%20%E7%8E%AF%E5%A2%83%E5%87%86%E5%A4%87。原创 2024-10-26 13:29:23 · 518 阅读 · 0 评论 -
Open WebUI + openai API / vllm API ,实战部署教程
介绍Open WebUI + Ollama 的使用: https://www.dong-blog.fun/post/1796。介绍 Ollama 的使用: https://www.dong-blog.fun/post/1797。这意味着你可以用vllm模型部署openai的api接口,然后在Open WebUI里面使用。介绍vllm 的使用:https://www.dong-blog.fun/post/1781。本篇博客玩个花的,Open WebUI 本身可以兼容openai 的api, 那来尝试一下。原创 2024-10-26 11:21:24 · 3230 阅读 · 0 评论 -
Ollama 使用指南,实战教程
Ollama 是什么:随着人工智能的发展,越来越多的开发者希望在本地运行和定制自己的语言模型。Ollama是一个轻量级且可扩展的框架,旨在帮助你在本地机器上构建和运行语言模型。本文将详细介绍如何使用 Ollama,从模型的导入、定制到命令行的使用,助你快速上手。Ollama 提供了一个简单的 API,用于创建、运行和管理模型,并提供了一系列预构建的模型库,方便在各种应用中轻松使用。导入和定制不同格式的模型(如 GGUF、PyTorch、Safetensors)。原创 2024-10-26 10:31:09 · 1041 阅读 · 0 评论