并发-CAS及其实现juc.atomic

什么是CAS

CAS(Compare And Swap,比较并交换),通常指的是这样一种原子操作:针对一个变量,首
先比较它的内存值与某个期望值是否相同,如果相同,就给它赋一个新值。
CAS 的逻辑用伪代码描述如下:

 if (value == expectedValue) {
     value = newValue;
 }

以上伪代码描述了一个由比较和赋值两阶段组成的复合操作,CAS 可以看作是它们合并后的整体
——一个不可分割的原子操作,并且其原子性是直接在硬件层面得到保障的

CAS可以看做是乐观锁(对比数据库的悲观、乐观锁)的一种实现方式,Java原子类中的递增操
作就通过CAS自旋实现的。
CAS是一种无锁算法,在不使用锁(没有线程被阻塞、上下文切换)的情况下实现多线程之间的变量同步。因此优先考虑使用CAS实现功能。

代码演示

10个线程同时,做100000以内的累加,如何实现?  有几种方法?不同实现方式效率对比:

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.locks.ReentrantLock;

import com.test.jucdemo.lock.CASLock;

/**
 * @author
 */
public class Test {
    // 保证可见性
    private volatile static int sum = 0;
    static Object object = "";
    static ReentrantLock lock = new ReentrantLock();

    static CASLock casLock = new CASLock();

    /**
     * // 10个线程同时,做100000以内的累加,如何实现?  有几种方法?
     *
     * @param args
     */
    public static void main(String[] args) throws InterruptedException {
        test1();
        test2();
        test3();
        test4();
    }

    public static void test1() throws InterruptedException {
        long start = System.currentTimeMillis();
        CountDownLatch countDownLatch = new CountDownLatch(10);
        for (int i = 0; i < 10; i++) {
            Thread thread = new Thread(() -> {
                for (int j = 0; j < 100000; j++) {
                    sum++;
                }
                countDownLatch.countDown();
            });
            thread.start();
        }
        countDownLatch.await();
        long end = System.currentTimeMillis();
        System.out.println(String.format("volatile sum : %s, 耗时:%s", sum, end - start));
        sum = 0;
    }

    public static void test2() throws InterruptedException {
        long start = System.currentTimeMillis();
        CountDownLatch countDownLatch = new CountDownLatch(10);
        Object object = "";
        for (int i = 0; i < 10; i++) {
            Thread thread = new Thread(() -> {
                for (int j = 0; j < 100000; j++) {
                    synchronized (object) {
                        sum++;
                    }
                }
                countDownLatch.countDown();
            });
            thread.start();
        }
        countDownLatch.await();
        long end = System.currentTimeMillis();
        System.out.println(String.format("synchronized sum : %s, 耗时:%s", sum, end - start));
        sum = 0;
    }


    public static void test3() throws InterruptedException {
        long start = System.currentTimeMillis();
        ReentrantLock lock = new ReentrantLock();
        CountDownLatch countDownLatch = new CountDownLatch(10);
        for (int i = 0; i < 10; i++) {
            Thread thread = new Thread(() -> {
                lock.lock();
                try {
                    for (int j = 0; j < 100000; j++) {
                        sum++;
                    }
                } finally {
                    countDownLatch.countDown();
                    lock.unlock();
                }
            });
            thread.start();
        }
        countDownLatch.await();
        long end = System.currentTimeMillis();
        System.out.println(String.format("ReentrantLock sum : %s, 耗时:%s", sum, end - start));
        sum = 0;
    }

    public static void test4() throws InterruptedException {
        long start = System.currentTimeMillis();
        CountDownLatch countDownLatch = new CountDownLatch(10);
        for (int i = 0; i < 10; i++) {
            Thread thread = new Thread(() -> {
                // 自旋
                for (; ; ) {
                    //state=0
//                    System.out.println(casLock.getState());
                    if (casLock.getState() == 0 && casLock.cas()) {
                        try {
                            for (int j = 0; j < 100000; j++) {
                                sum++;
                            }
//                            System.out.println(casLock.getState());
                        } finally {
                            // state=0
                            casLock.setState(0);
                        }
                        break;
                    }
                }
                countDownLatch.countDown();
            });
            thread.start();
        }
        countDownLatch.await();
        long end = System.currentTimeMillis();
        System.out.println(String.format("casLock sum : %s, 耗时:%s", sum, end - start));
        sum = 0;
    }
}

CASLock代码在别的目录下面,没有粘贴,此处待优化

结果展示:

CAS缺陷

CAS 虽然高效地解决了原子操作,但是还是存在一些缺陷的,主要表现在三个方面:

  • 自旋(CAS操作一般放在自旋中使用,automic包中的实现已经包含的自旋的逻辑)  长时间地不成功,则会给 CPU 带来非常大的开销

        解决方案:LongAdder,LongAccumulator 样例代码如下,具体实现原理忽略  

package com.test.jucdemo.atomic;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.LongAdder;

/**
 * @author 
 */
public class LongAdderTest {

    public static void main(String[] args) {
        testAtomicLongVSLongAdder(10, 10000);
        System.out.println("==================");
        testAtomicLongVSLongAdder(10, 200000);
        System.out.println("==================");
        testAtomicLongVSLongAdder(100, 200000);
    }

    static void testAtomicLongVSLongAdder(final int threadCount, final int times) {
        try {
            System.out.println("条件>>>>>>线程数:" + threadCount + ", 单线程操作计数" + times);

            long start = System.currentTimeMillis();
            testLongAdder(threadCount, times);
            long end = System.currentTimeMillis() - start;
            System.out.println("结果>>>>>>LongAdder方式增加计数" + (threadCount * times) + "次,共计耗时:" + end);

            long start2 = System.currentTimeMillis();
            testAtomicLong(threadCount, times);
            long end2 = System.currentTimeMillis() - start2;
//            System.out.println("条件>>>>>>线程数:" + threadCount + ", 单线程操作计数" + times);
            System.out.println("结果>>>>>>AtomicLong方式增加计数" + (threadCount * times) + "次,共计耗时:" + end2);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    static void testAtomicLong(final int threadCount, final int times) throws InterruptedException {
        CountDownLatch countDownLatch = new CountDownLatch(threadCount);
        AtomicLong atomicLong = new AtomicLong();
        for (int i = 0; i < threadCount; i++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int j = 0; j < times; j++) {
                        atomicLong.incrementAndGet();
                    }
                    countDownLatch.countDown();
                }
            }, "my-thread" + i).start();
        }
        countDownLatch.await();
    }

    static void testLongAdder(final int threadCount, final int times) throws InterruptedException {
        CountDownLatch countDownLatch = new CountDownLatch(threadCount);
        LongAdder longAdder = new LongAdder();
        for (int i = 0; i < threadCount; i++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int j = 0; j < times; j++) {
                        longAdder.add(1);
                    }
                    countDownLatch.countDown();
                }
            }, "my-thread" + i).start();
        }
        countDownLatch.await();
    }
}

        

        自旋不成功,是不是也相当于阻塞? 自旋失败造成的CPU空转和阻塞、用户态至内核态的切换两者怎么选择?

         并发场景下优化,优先选择CAS+自旋解决方案,对比的案例也可以说明

        automic包中的实现已经包含的自旋的逻辑

  • 只能保证一个共享变量原子操作
  • ABA 问题     AtomicStampedReference
import java.util.concurrent.atomic.AtomicStampedReference;
import java.util.concurrent.locks.LockSupport;

import lombok.extern.slf4j.Slf4j;

/**
 * @author  Fox
 */
@Slf4j
public class AtomicStampedReferenceTest {

    public static void main(String[] args) {
        // 定义AtomicStampedReference    Pair.reference值为1, Pair.stamp为1
        AtomicStampedReference atomicStampedReference = new AtomicStampedReference(1,1);

        new Thread(()->{
            int[] stampHolder = new int[1];
            int value = (int) atomicStampedReference.get(stampHolder);
            int stamp = stampHolder[0];
            log.debug("Thread1 read value: " + value + ", stamp: " + stamp);

            // 阻塞1s
            LockSupport.parkNanos(1000000000L);

            // Thread1通过CAS修改value值为3   stamp是版本,每次修改可以通过+1保证版本唯一性
            if (atomicStampedReference.compareAndSet(value, 3,stamp,stamp+1)) {
                log.debug("Thread1 update from " + value + " to 3");
            } else {
                log.debug("Thread1 update fail!");
            }

            boolean b = atomicStampedReference.attemptStamp(value, 3);
            if (b) {
                log.debug("Thread1 update  " + " to 3");
            }
//            atomicStampedReference.
        },"Thread1").start();

        new Thread(()->{
            int[] stampHolder = new int[1];
            int value = (int)atomicStampedReference.get(stampHolder);
            int stamp = stampHolder[0];
            log.debug("Thread2 read value: " + value+ ", stamp: " + stamp);
            // Thread2通过CAS修改value值为2
            if (atomicStampedReference.compareAndSet(value, 2,stamp,stamp+1)) {
                log.debug("Thread2 update from " + value + " to 2");

                // do something

                value = (int) atomicStampedReference.get(stampHolder);
                stamp = stampHolder[0];
                log.debug("Thread2 read value: " + value+ ", stamp: " + stamp);
                // Thread2通过CAS修改value值为1
                if (atomicStampedReference.compareAndSet(value, 1,stamp,stamp+1)) {
                    log.debug("Thread2 update from " + value + " to 1");
                }
                log.debug("Thread2 update stamp: " + atomicStampedReference.getStamp());
            }
        },"Thread2").start();
    }
}

juc.atomic

具体使用很简单,分类的话可以到 juc.atomic包下面看一下即可。

参考链接:从 synchronized 到 CAS 和 AQS - 彻底弄懂 Java 各种并发锁_weixin_34326558的博客-CSDN博客
Java中CAS原理详解 - BarryW - 博客园

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值