【题解&刷题总结】摆渡车(斜率优化dp)

本博客介绍了一道关于摆渡车调度的问题,旨在求解如何最小化同学们的等车时间总和。通过动态规划的方法,结合斜率优化技巧,实现了转移方程的高效计算。博主详细阐述了动态规划的状态定义、转移过程,并提供了优化思路和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

有 𝑛 名同学要乘坐摆渡车从人大附中前往人民大学,第 𝑖 位同学在第 𝑡𝑖 分钟去等车。只有一辆摆渡车在工作,但摆渡车容量可以视为无限大。摆渡车从人大附中出发、把车上的同学送到人民大学、再回到人大附中(去接其他同学),这样往返一趟总共花费 𝑚 分钟(同学上下车时间忽略不计)。摆渡车要将所有同学都送到人民大学。
凯凯很好奇,如果他能任意安排摆渡车出发的时间,那么这些同学的等车时间之和最小为多少呢?
注意:摆渡车回到人大附中后可以即刻出发。

输入

输入文件名为 bus.in。
第一行包含两个正整数 𝑛,m,以一个空格分开,分别代表等车人数和摆渡车往返一趟的时间。
第二行包含 𝑛 个正整数,相邻两数之间以一个空格分隔,第 i 个非负整数 𝑡𝑖 代表第 i 个同学到达车站的时刻。

输出

输出文件名为 bus.out。
输出一行,一个整数,表示所有同学等车时间之和的最小值(单位:分钟)。

样例输入1

5 1
3 4 4 3 5

样例输出1

0

【输入输出样例 1 说明】
同学 1 和同学 4 在第 3 分钟开始等车,等待 0 分钟,在第 3 分钟乘坐摆渡车出发。摆渡车在第 4 分钟回到人大附中。
同学 2 和同学 3 在第 4 分钟开始等车,等待 0 分钟,在第 4 分钟乘坐摆渡车出发。摆渡车在第 5 分钟回到人大附中。
同学 5 在第 5 分钟开始等车,等待 0 分钟,在第 5 分钟乘坐摆渡车出发。自此所有同学都被送到人民大学。总等待时间为 0。

样例输入2

5 5
11 13 1 5 5

样例输出2

4

【输入输出样例 2 说明】
同学 3 在第 1 分钟开始等车,等待 0 分钟,在第 1 分钟乘坐摆渡车出发。摆渡车在第 6 分钟回到人大附中。
同学 4 和同学 5 在第 5 分钟开始等车,等待 1 分钟,在第 6 分钟乘坐摆渡车出发。摆渡车在第 11 分钟回到人大附中。
同学 1 在第 11 分钟开始等车,等待 2 分钟;同学 2 在第 13 分钟开始等车,等待 0 分钟。他/她们在第 13 分钟乘坐摆渡车出发。自此所有同学都被送到人民大学。
总等待时间为 4。可以证明,没有总等待时间小于 4 的方案。

数据范围限制

对于 10% 的数据, n ≤ 10 , m = 1 , 0 ≤ t i ≤ 100 n ≤ 10,m = 1, 0 ≤ t_i ≤ 100 n10,m=1,0ti100
对于 30% 的数据, n ≤ 20 , m ≤ 2 , 0 ≤ t i ≤ 100 n ≤ 20, m≤ 2, 0 ≤ t_i≤ 100 n20,m2,0ti100
对于 50% 的数据, n ≤ 500 , m ≤ 100 , 0 ≤ t i ≤ 1 0 4 n ≤ 500, m ≤ 100, 0 ≤ t_i ≤ 10^4 n500,m100,0ti104
另有 20% 的数据, n ≤ 500 , m ≤ 10 , 0 ≤ t i ≤ 4 × 1 0 6 n ≤ 500, m≤ 10, 0 ≤ t_i ≤ 4 × 10^6 n500,m10,0ti4×106
对于 100% 的数据,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值