【题解&刷题总结】青蛙的约会

题目描述

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。

我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

输入格式

输入只包括一行5个整数 x , y , m , n , L x,y,m,n,L xymnL
其中 0 < x ≠ y < = 2000000000 , 0 < m 、 n < = 2000000000 , 0 < L < = 2100000000 0<x≠y < =2000000000,0 < m、n < =2000000000,0 < L < =2100000000 0<x=y<=20000000000<mn<=20000000000<L<=2100000000

输出格式

输出碰面所需要的天数,如果永远不可能碰面则输出一行" I m p o s s i b l e Impossible Impossible"。

输入输出样例

输入

1 2 3 4 5

输出

4

题解

第一眼看到这道题,就让我想起了荒岛野人那道题,于是就从那个角度开始思考:
首先,倘若两个青蛙要跳到同一个地方,那么需要满足:
x + q ⋅ m ≡ y + q ⋅ n x+q·m \equiv y+q·n x+qmy+qn ( m o d (mod (mod L ) L) L)
q ⋅ ( m − n ) ≡ y − x q·(m-n) \equiv y-x q(mn)yx ( m o d (mod (mod L ) L) L)
q ( m − n ) + p L = y − x q(m-n)+pL=y-x q(mn)+pL=yx
O r : Or: Or:
q ( n − m ) + p L = x − y q(n-m)+pL=x-y q(nm)+pL=xy
看吧,这不就是扩欧了吗?对于这个有两个式子的问题,其实我只是想让前面 q q q p p p 的系数为正罢了。

Code

#include<cstdio>
#define ll long long
using namespace std;
ll d,x0,y0;
ll abs(ll x){return x<0?-x:x;}
ll exgcd(ll a,ll b,ll &x,ll &y){
	if (b==0){
		x=1;y=0;
		return a;
	}
	ll dd=exgcd(b,a%b,x,y);
	ll t=x;x=y;y=t-y*(a/b);
	return dd;
}
int main(){
	ll a,b,m,n,L;
	scanf("%lld%lld%lld%lld%lld",&a,&b,&m,&n,&L);
	ll s1=m-n,s2=b-a;
	if (s1<0) s1=-s1,s2=-s2;
	d=exgcd(s1,L,x0,y0);
	if (s2%d!=0) puts("Impossible");
	else{
		x0*=s2/d;
		printf("%lld",(x0%(L/d)+L/d)%(L/d));
	}
	return 0;
}
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页