深度学习系列之 mAP

mAP:mean Averge Precision,作为object detection中衡量检测精度的指标。

这里写图片描述

在目标检测中,每一类都可以根据recallprecision绘制P-R曲线AP就是该曲线下的面积。而mAP就是所有类AP的平均值。

Recall:召回率

召回率也叫查全率,是你预测的样本中实际的正样本数 / 所有的正样本数,所以为了提高召回率,可以多预测。

eg:有128个样本,其中32个正,96个负。

我可以说,我预测有128个正样本。所以recall= 32/32 = 100%

Precision:准确率

准确率也叫查准率,是你预测的样本中实际的正样本数 / 预测的样本数,为了提高准确率,可以少预测。

eg:还是上面的例子,上面的precision = 32/128 = 25%

我为了提高precision,我可以只预测一个样本。这样就有1/4的概率能预测到。假设恰好预测到了正样本,此时precision = 1/1 = 100%

*往往召回率越高,准确率越低。

目标检测中mAP

假设在测试集图片中,对某一类,有16个正样本,48个负样本。
将score前K个样本预测为正样本,假设这里面实际上有M个正样本。
则可以计算(P,R)。
调节阈值K,可以得到不同的(P-R),最终可以让recall变化从0到1.
此时可以绘制P-R曲线。即可计算该类的AP
对所有类的AP取均值,即可得到mAP

mAP画图是深度学习中的一个指标,用于评估目标检测算法的性能。mAP代表平均精度均值(mean Average Precision),它是通过计算不同类别的精度-召回曲线下的面积来得到的。精度-召回曲线是在不同的召回率下计算的,召回率是指检测到的正样本与所有正样本的比例,而精度是指检测到的正样本中真正正确的比例。 在深度学习中,mAP画图通常用于比较不同模型或算法在目标检测任务上的性能。通过绘制精度-召回曲线,并计算曲线下的面积,可以得到一个综合评估指标,用于衡量模型的准确性和鲁棒性。 如果你想了解更多关于mAP画图和深度学习的内容,可以参考\[1\]中提供的链接,里面有详细的介绍和实践案例。 #### 引用[.reference_title] - *1* *3* [深度学习系列资料总结](https://blog.csdn.net/qq_36816848/article/details/125829496)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [深度学习画图工具](https://blog.csdn.net/qq_40677266/article/details/92793474)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值