POJ-3071 Football (概率dp)

24 篇文章 0 订阅

题目链接:http://poj.org/problem?id=3071

题目大意:总共有2^n只球队进行比赛,比赛一开始按第一队和第二队、第三队和第四队、第五队和第六队...这样的规律进行比赛,赢的队伍和下一只队伍进行比赛,最后的便是冠军,现在给出p[i][j]表示第 i 只球队战胜第 j 只球队的概率,问夺冠概率最大的队伍是哪只球队。

题目思路:用dp[i][j]表示第 i 轮比赛中,j获胜的概率,则有如下的状态转移方程:

dp[i][j] = ∑(dp[i-1][j]*dp[i-1][k]*p[j][k]);只需将所有可能的k枚举出来就能得到dp[i][j]。

由于这个比赛制度是以二叉树的形状进行的,根据二叉树的性质,第 j 个队伍在第 i 轮可能遇到的对手 k 的范围为:

[ ((j/(1<<(i-1))^1)*(1<<(i-1)) ,(((j/(1<<(i-1))^1) + 1)*(1<<(i-1))]。

具体的看代码。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;

int n;
double p[1<<8][1<<8];
double dp[8][1<<8];

int main(){
    while(~scanf("%d",&n) && n != -1){
        for(int i = 0;i < (1<<n);i++)
            for(int j = 0;j < (1<<n);j++)
                scanf("%lf",&p[i][j]);
        memset(dp,0,sizeof(dp));
        for(int i = 0;i < (1<<n);i++) dp[0][i] = 1;
        for(int i = 1;i <= n;i++){
            for(int j = 0;j < (1<<n);j++){
                int t = j/(1<<(i-1));
                t ^= 1;
                for(int k = t*(1<<(i-1));k < (t+1)*(1<<(i-1));k++)
                    dp[i][j] += dp[i-1][j]*dp[i-1][k]*p[j][k];
            }
        }
        int ans = -1;
        double tmp = 0;
        for(int i = 0;i < (1<<n);i++){
            if(dp[n][i] > tmp){
                tmp = dp[n][i];
                ans = i+1;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值