```python
import numpy as np
from PIL import Image
# 将边框转换为方形窗体
def convert_to_square(bboxes):
bboxes_like = np.zeros_like(bboxes)
x1,y1,x2,y2 = [bboxes[:,i] for i in range(4)]
h = y2-y1+1.0
w = x2-x1+1.0
max_side = np.maximum(h,w)
bboxes_like[:,0] = x1+w*0.5 -max_side*0.5
bboxes_like[:,1] = y1+h*0.5 -max_side*0.5
bboxes_like[:,2] =bboxes_like[:,0]+max_side-1.0
bboxes_like[:,3]=bboxes_like[:,1]+max_side-1.0
return bboxes_like
#将边界框转换为更像真正的边界框
# 偏移(offsets)是网络的输出之一
def calibraate_box(bboxes,offsers):
x1
mtcnn utils
最新推荐文章于 2022-02-15 17:56:10 发布
本文主要探讨了MTCNN(Multi-Task Cascaded Convolutional Networks)在人脸识别领域的应用,详细介绍了其工作原理,并分享了一些实用的工具和优化技巧,帮助开发者更好地实现面部检测和关键点定位。
摘要由CSDN通过智能技术生成