mtcnn utils

本文主要探讨了MTCNN(Multi-Task Cascaded Convolutional Networks)在人脸识别领域的应用,详细介绍了其工作原理,并分享了一些实用的工具和优化技巧,帮助开发者更好地实现面部检测和关键点定位。
摘要由CSDN通过智能技术生成

```python
import numpy as np
from PIL import Image
# 将边框转换为方形窗体
def convert_to_square(bboxes):

    bboxes_like = np.zeros_like(bboxes)
    x1,y1,x2,y2 = [bboxes[:,i] for i in range(4)]
    h = y2-y1+1.0
    w = x2-x1+1.0
    max_side = np.maximum(h,w)
    bboxes_like[:,0] = x1+w*0.5 -max_side*0.5
    bboxes_like[:,1] = y1+h*0.5 -max_side*0.5
    bboxes_like[:,2] =bboxes_like[:,0]+max_side-1.0
    bboxes_like[:,3]=bboxes_like[:,1]+max_side-1.0
    return bboxes_like

#将边界框转换为更像真正的边界框
# 偏移(offsets)是网络的输出之一
def calibraate_box(bboxes,offsers):
    x1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值