使用random模块需要提前导入
import randm
1、random.random ()
用于生成一个0到1的随机浮点数: 0 <= n < 1.0;
random.random()
>>0.45711363321618736
2、random.uniform(a,b)
用于生成一个指定范围内的随机浮点数,两个参数其中一个是上限,一个是下限。如果a > b,则生成的随机数n: b <= n <= a,如果 a <b, 则 a <= n <= b;
(就是说这个函数取值总是取两个数中间的范围)
random.uniform(1,10)
>>9.866316293763688
3、random.randint(a, b)
用于生成一个指定范围内的整数。其中参数a是下限,参数b是上限,生成的随机数n: a <= n <= b;
注意:这里a<=b,不然会报空范围错误
random.randint(10, 20)
>>14
4、random.randrange([start], stop[, step])
从指定范围内,按指定基数递增的集合中 获取一个随机数,如:random.randrange(10, 100, 2),结果相当于从[10, 12, 14, 16, … 96, 98]序列中获取一个随机数。random.randrange(10, 100, 2)在结果上与 random.choice(range(10, 100, 2) 等效,当然也可以写成负索引的形式random.randrange(100,10,-2)
random.randrange(10, 100, 2)#从[10, 12, 14, 16, … 96, 98]序列中获取一个随机数
>>12
5、random.shuffle(L[, random])
用于将一个列表中的元素打乱;
L=['a','b','c','d']
L=random.shuffle(L)
print(L)
>>['c', 'b', 'a', 'd']
6、random.choice(seq)
从一个非空序列中随机选取一个元素(seq为有序的为空序列,如:list、tuple等);
random.choice(L)
>>'c'
7、random.sample(seq,k)
从指定序列seq中随机获取指定长度k的片断,sample函数不会修改原有序列;
注意:此函数为“抽样函数”,不会重复抽取同一个元素,所以K不能大于seq的长度;
random.sample(L,2)
>>['d', 'a']
8、 random.choices(seq, weights=None, *, cum_weights=None, k=1)
从seq中进行K次随机选取,每次选取一个元素(注意会出现同一个元素多次被选中的情况),weights是相对权重值,seq中有几个元素就要有相对应的weights值,cum_weights是累加权重值,例如,相对权重〔10, 5, 30,5〕相当于累积权重〔10, 15, 45,50〕。在内部,在进行选择之前,相对权重被转换为累积权重,因此提供累积权重节省了工作,此函数返回一个列表。
random.choices(L,k=10)#随机取10次
>>['d', 'c', 'c', 'b', 'a', 'b', 'd', 'b', 'd', 'b']
random.choices(L,weights=[1,1,1,7],k=10)#按相对权重取10次
>>['a', 'b', 'c', 'd', 'd', 'd', 'c', 'd', 'd', 'a']
random.choices(L,cum_eights=[1,2,3,10],k=10)#按累计权重取10次
>>['a', 'b', 'c', 'd', 'd', 'd', 'c', 'd', 'd', 'a']
建议按照累计权重的方式传参,这样会提升效率~