关于如何使用Chinese-Word-Vector工具

关于如何使用Chinese-Word-Vector工具

做中文NLP最重要的是中文分词和词嵌入,有一些预训练的词嵌入文件已经写好了,我们只需要加载使用就好

因为加载的过程会出现编码的错误,所以直接open的方式读取词嵌入文档是不行的

下面介绍三种不同的加载Chinese-Word-Vector方法,拿sgns.zhihu.bigram-char.bz2举例

方法一

from gensim.models.keyedvectors import KeyedVectors
w2v_model = KeyedVectors.load_word2vec_format("sgns.zhihu.bigram-char.bz2", binary=False,unicode_errors='ignore')
print(w2v_model)

方法二

    with bz2.open("sgns.zhihu.bigram-char.bz2", 'rb') as f:
        word_vecs = f.readlines()
    word_vecs = [i.decode('utf-8') for i in word_vecs]
    print(word_vecs)

方法三

    def load_dense_drop_repeat(path):
        vocab_size, size = 0, 0
        vocab = {"itos": [], "stoi": {}}
        count = 0
        with codecs.open(path, "r", "utf-8", errors='ignore') as f:
            first_line = True
            for line in f:
                if first_line:
                    first_line = False
                    vocab_size = int(line.strip().split()[0])
                    size = int(line.rstrip().split()[1])
                    matrix = np.zeros(shape=(vocab_size, size), dtype=np.float32)
                    continue
                vec = line.strip().split()
                if not vocab["stoi"].__contains__(vec[0]):
                    vocab["stoi"][vec[0]] = count
                    matrix[count, :] = np.array([float(x) for x in vec[1:]])
                    count += 1
        for w, i in vocab["stoi"].items():
            vocab["itos"].append(w)
        return matrix, vocab, size, len(vocab["itos"])

这三种方法加载出来的结构有所不同,具体使用哪一种需要看实际情况

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

企鹅宝儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值