深度学习
文章平均质量分 96
月下独码
CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/literature?__c=1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编程,高并发设计,Springboot和微服务,熟悉Linux,ESXI虚拟化以及云原生Docker和K8s,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分享所学,希望通过我的实践经历和见解,启发他人的创新思维。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。
展开
-
Springboot 整合 Java DL4J 打造文本摘要生成系统
在信息爆炸的时代,大量的文本数据充斥着我们的生活。无论是新闻报道、学术论文还是各类文档,阅读和理解这些长篇文本都需要耗费大量的时间和精力。为了解决这个问题,文本摘要生成技术应运而生。本文将介绍如何使用 Spring Boot 整合 Java Deeplearning4j 来构建一个文本摘要生成系统,该系统能够自动从长篇文本中提取关键信息,生成简洁的摘要,帮助用户快速了解文本的主要内容。文本摘要生成技术在自然语言处理领域具有重要的应用价值。它可以帮助用户节省时间,提高信息获取的效率。原创 2024-11-09 09:20:46 · 1565 阅读 · 83 评论 -
Springboot 整合 Java DL4J 打造企业知识图谱构建系统
在当今数字化时代,**企业面临着海量的信息**,如何有效地管理这些信息并实现智能搜索成为了一个重要的课题。**知识图谱**作为一种强大的知识表示和管理工具,能够将企业中的各种实体和它们之间的关系以图的形式表示出来,从而为知识管理和智能搜索提供支持。**自然语言处理(NLP)** 技术在知识图谱的构建中起着关键的作用。通过对企业内部的文档、报告等文本数据进行分析,可以提取出其中的实体(如企业部门、员工、产品等)和关系(如部门与员工的隶属关系、产品与部门的生产关系等),进而构建知识图谱。原创 2024-11-11 00:15:00 · 1279 阅读 · 72 评论 -
Springboot 整合 Java DL4J 打造自然语言处理之语音识别系统
在当今数字化时代,**语音识别技术**正变得越来越重要。从智能手机中的语音助手到智能家居设备的语音控制,**语音识别**为人们提供了一种更加便捷、自然的人机交互方式。语音识别系统本质上是将语音信号转换为计算机能够理解和处理的文本形式。这一过程涉及到多个复杂的技术环节,包括**音频信号处理**、**特征提取**以及基于神经网络的**模型训练**等。我们将探索如何使用`Spring Boot`整合`Java Deeplearning4j`来构建一个语音识别系统。原创 2024-11-08 08:03:07 · 2413 阅读 · 77 评论 -
Springboot 整合 Java DL4J 打造自然语言处理之智能写作助手
Spring Boot 是一个用于快速构建独立、生产级别的 Spring 应用程序的框架。它简化了 Spring 应用程序的开发过程,通过自动配置和约定优于配置的原则,使得开发者可以更加专注于业务逻辑的实现。在本项目中,Spring Boot 将用于构建后端服务,提供 RESTful API 接口,与前端进行交互。本文介绍了如何使用 Spring Boot 整合 Deeplearning4j 在自然语言处理领域实现一个智能写作助手。原创 2024-11-03 00:15:00 · 2650 阅读 · 82 评论 -
Springboot 整合 Java DL4J 构建自然语言处理之机器翻译系统
Spring Boot 是一个用于快速构建独立、生产级别的基于 Spring 的应用程序的框架。它简化了 Spring 应用程序的开发过程,提供了自动配置、起步依赖等功能,使得开发者可以更加专注于业务逻辑的实现。在本项目中,Spring Boot 将用于构建后端服务,提供 RESTful API 接口,接收用户的翻译请求,并返回翻译结果。本文介绍了如何使用 Spring Boot 整合 Deeplearning4j 在自然语言处理领域实现一个机器翻译系统。原创 2024-11-01 16:40:00 · 2093 阅读 · 80 评论 -
Springboot 整合 Java DL4J 实现情感分析系统
Spring Boot 是一个用于快速构建独立、生产级别的 Spring 应用程序的框架。它简化了 Spring 应用程序的开发,提供了自动配置、起步依赖和内置服务器等功能,使开发者能够专注于业务逻辑的实现。本文介绍了如何使用 Spring Boot 整合 Java Deeplearning4j 构建一个情感分析系统。通过选择 LSTM 神经网络,对用户评价进行数据预处理、构建模型、训练模型和预测情感,可以帮助企业了解用户对产品或服务的满意度,并提供改进建议。原创 2024-10-31 02:45:00 · 2355 阅读 · 47 评论 -
Springboot 整合 Java DL4J 实现文本分类系统
随着信息技术的飞速发展,我们每天都会接触到大量的文本数据,如新闻文章、电子邮件、社交媒体帖子等。对这些文本数据进行分类,可以帮助我们更好地理解和处理它们,提高信息检索和管理的效率。文本分类系统可以应用于多个领域,如新闻媒体、电子商务、金融服务等。在这个文本分类系统中,我们选择使用循环神经网络(Recurrent Neural Network,RNN),特别是长短期记忆网络(Long Short-Term Memory,LSTM)。选择 LSTM 的理由如下: 处理序列数据:LSTM 非常适合处理原创 2024-10-28 12:08:26 · 2253 阅读 · 54 评论 -
Springboot 整合 Java DL4J 实现智能客服
自然语言处理技术使得智能客服能够理解用户的自然语言输入。用户无需再费力地记住特定的指令或关键词,而是可以用日常的语言表达问题和需求。这大大提高了用户与客服交互的便捷性,降低了用户的使用门槛。无论是询问产品信息、寻求技术支持还是反馈问题,用户都可以以最自然的方式进行表达,就像与一个人类客服交流一样。本文将介绍如何使用 Spring Boot 整合 Java Deeplearning4j 来构建一个智能客服系统,包括所使用的神经网络、数据集格式、技术介绍、Maven 依赖、代码示例、单元测试等内容。原创 2024-10-26 21:54:41 · 1842 阅读 · 45 评论 -
Springboot 整合 Java DL4J 实现室内装饰设计系统
在当今数字化时代,利用人工智能技术为室内装饰设计提供创新解决方案成为了可能。本文将介绍如何使用 Spring Boot 整合 Java Deeplearning4j 构建一个室内装饰设计系统,该系统能够根据房间照片自动生成装修方案。本系统采用了 `Spring Boot` 作为后端框架,结合 `Java Deeplearning4j` 进行图像识别和处理。前端可以使用任何现代的 Web 框架来展示装修方案和与用户进行交互。原创 2024-10-26 21:32:06 · 812 阅读 · 37 评论 -
Springboot 整合 Java DL4J 实现时尚穿搭推荐系统
Spring Boot 是一个用于快速开发 Java 应用程序的框架。它简化了 Spring 应用程序的配置和部署,使得开发人员可以更加专注于业务逻辑的实现。:Deeplearning4j 是一个用于深度学习的 Java 库。它支持多种深度学习算法,包括卷积神经网络(CNN)、**循环神经网络(RNN)**等。在本案例中,我们将使用 Deeplearning4j 来实现图像识别功能。神经网络选择:在本案例中,我们选择使用**卷积神经网络(CNN)**来实现图像识别功能。原创 2024-10-24 09:49:43 · 1483 阅读 · 72 评论 -
Springboot 整合 Java DL4J 实现文物保护系统
本系统采用 Spring Boot 作为后端框架,结合 Deeplearning4j 进行图像识别。前端可以使用任何现代的 Web 框架或移动端框架来与后端进行交互,上传文物图像并获取识别结果。对于文物的损坏情况识别,我们可以选择卷积神经网络(Convolutional Neural Network,CNN)。CNN 在图像识别领域表现出色,具有以下优点:- 局部连接:能够有效地捕捉图像中的局部特征,对于文物的裂缝、缺失等局部损坏情况有较好的识别能力。原创 2024-10-20 00:15:00 · 3722 阅读 · 71 评论 -
Springboot 整合 Java DL4J 实现用户个性广告推荐系统
在当今数字化时代,个性化推荐系统对于提高用户体验和广告效果至关重要。本文将介绍如何使用 Spring Boot 整合 `Java Deeplearning4j` 在图像识别领域构建一个用户个性广告推荐系统。随着互联网的发展,广告的数量呈爆炸式增长。为了提高广告的点击率和转化率,个性化推荐系统应运而生。本系统通过分析用户的浏览历史和兴趣爱好,结合图像识别技术,为用户推荐相关的广告图片,从而提高用户体验和广告效果。原创 2024-10-19 10:22:04 · 1024 阅读 · 47 评论 -
Springboot 整合 Java DL4J 实现安防监控系统
在当今社会,安防监控系统的重要性日益凸显。传统的安防监控系统主要依赖人工监控,不仅效率低下,而且容易出现疏漏。随着人工智能技术的发展,智能安防监控系统逐渐成为研究的热点。本文将介绍如何使用 Spring Boot 整合 Java Deeplearning4j 实现一个智能安防监控系统,该系统能够自动检测异常行为,如闯入、打斗等,通过分析监控视频中的图像,及时发现潜在的安全隐患。原创 2024-10-17 20:09:54 · 1977 阅读 · 45 评论 -
2024年诺贝尔物理学奖授予机器学习与神经网络:变革、应用与展望
移动端可微信小程序搜索“”)总架构师,15年工作经验,精通Java编程高并发设计,熟悉LinuxESXI虚拟化以及,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分享所学,希望通过我的实践经历和见解,启发他人的创新思维。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。原创 2024-10-11 18:04:14 · 2823 阅读 · 47 评论 -
Springboot 整合 Java DL4J 实现农产品质量检测系统
Spring Boot 是一个用于快速构建独立、生产级别的 Spring 应用程序的框架。它简化了 Spring 应用程序的开发,提供了自动配置、起步依赖和内置服务器等功能,使开发人员能够更专注于业务逻辑的实现。:Deeplearning4j 是一个基于 Java 的深度学习库,支持多种深度学习算法和神经网络架构。它提供了高效的数值计算和并行处理能力,适用于大规模数据的训练和推理。图像识别技术:图像识别是指计算机对图像中的目标进行检测、分类和识别的技术。原创 2024-10-15 11:14:29 · 2883 阅读 · 67 评论 -
Springboot 整合 Java DL4J 实现交通标志识别系统
在这个交通标志识别系统中,我们选择使用卷积神经网络(CNNCNN局部连接:CNN 中的神经元只与输入图像的局部区域相连,这使得网络能够捕捉图像中的局部特征,如边缘、纹理等。对于交通标志这种具有特定形状和颜色特征的对象,局部连接能够有效地提取关键信息。权值共享:CNN 中的滤波器在整个图像上共享权值,这大大减少了参数数量,降低了模型的复杂度,同时也提高了模型的泛化能力。层次结构:CNN 通常由多个卷积层、池化层和全连接层组成,这种层次结构能够逐步提取图像的高级特征,从而实现对复杂图像的准确识别。原创 2024-10-14 00:15:00 · 3046 阅读 · 67 评论 -
Springboot 整合 Java DL4J 实现医学影像诊断功能
Spring Boot 是一个用于快速开发 Java 应用程序的框架。它简化了 Spring 应用程序的配置和部署,提供了自动配置、起步依赖等功能,使开发者能够更加专注于业务逻辑的实现。我们使用公开的医学影像数据集,如Kaggle 上的医学影像数据集。这些数据集通常包含大量的 X 光片、CT 扫描等医学影像,以及对应的病变区域标注。原创 2024-10-13 00:15:00 · 1763 阅读 · 31 评论 -
Springboot 整合 Java DL4J 实现物流仓库货物分类
本案例主要使用 Spring Boot 作为后端框架,结合进行图像识别。提供了便捷的开发环境和强大的依赖管理,而则为图像识别提供了强大的深度学习算法支持。本案例使用的数据集可以从公开的图像数据集网站上获取,也可以通过自己采集物流仓库中的包裹图像来构建数据集。原创 2024-10-12 00:15:00 · 1901 阅读 · 47 评论 -
Springboot 整合 Java DL4J 实现企业门禁人脸识别系统
是一个基于 Spring 框架的快速开发框架,它简化了 Spring 应用的开发过程,使得开发者可以更加专注于业务逻辑的实现。在本案例中,我们使用 Spring Boot 来构建企业门禁系统的后端服务,实现人脸识别的业务逻辑。是一个基于 Java 的深度学习框架,它支持多种神经网络模型,如 CNN、循环神经网络(RNN)等。在本案例中,我们使用 Deeplearning4j 来训练和部署人脸识别模型。图像预处理。原创 2024-10-12 00:15:00 · 1964 阅读 · 33 评论 -
Java Deeplearning4j:实现时间序列预测
时间序列数据是按照时间顺序排列的数据点序列。例如,股票价格、气温、销售量等都是时间序列数据。在时间序列预测任务中,我们的目标是根据历史数据预测未来的值。为了进行时间序列预测,我们需要准备一个合适的数据集。可以从各种来源获取时间序列数据,例如数据库、文件、网络 API 等。数据的质量:数据应该是准确、完整和可靠的。数据的长度:数据应该足够长,以便能够训练出一个有效的模型。数据的频率:数据的采样频率应该与预测任务的需求相匹配。原创 2024-10-11 00:30:00 · 2194 阅读 · 59 评论 -
Java Deeplearning4j:实现文本分类
在本文中,我们介绍了如何使用 DeepLearning4J 构建、训练和评估文本分类模型。我们首先准备了数据集,并进行了数据预处理和向量化。然后,我们构建了一个 RNN 模型,并配置了训练参数。最后,我们使用训练数据训练模型,并使用测试数据评估模型的性能。通过调整模型和参数,我们可以提高模型的性能。原创 2024-10-09 00:30:00 · 3346 阅读 · 85 评论 -
Java Deeplearning4j:实现图像分类
本文介绍了如何使用 DeepLearning4J 进行图像分类任务。我们首先介绍了相关的 Maven 依赖,然后详细介绍了数据集准备、模型构建、模型训练和评估等关键步骤。通过实际的例子,我们展示了如何使用 DL4J 构建、训练和评估图像分类模型。最后,我们介绍了一些调整模型和参数的方法,以提高模型的性能。希望本文能够帮助读者更好地理解和使用 DeepLearning4J 进行图像分类任务。原创 2024-10-07 00:15:00 · 2736 阅读 · 73 评论 -
Java Deeplearning4j:高级应用 之 模型部署
模型导出是将训练好的深度学习模型转换为一种可部署的格式,以便在生产环境中进行加载和使用。这种转换过程将模型的结构、权重和相关的元数据打包成一种可移植的格式。常见的可部署格式包括和等。监控和维护模型是指在模型部署到生产环境后,对模型的性能和稳定性进行监控,并及时处理模型漂移和更新模型。本文介绍了如何使用 Java Deeplearning4j 进行模型的部署,包括模型的导出、加载和使用以及监控和维护。通过导出模型为可部署的格式,可以实现跨平台部署和方便集成。原创 2024-10-05 00:30:00 · 2653 阅读 · 65 评论 -
Java Deeplearning4j:高级应用 之 自定义层和损失函数
在深度学习领域,是一个强大的库,它为Java开发者提供了构建和训练神经网络的便捷方式。然而,在实际应用中,标准的层和损失函数可能无法满足特定的需求。这时,使用来自定义层和损失函数就变得非常重要。本文将深入探讨在Java中使用进行自定义层和损失函数的相关知识,包括如何创建、使用以及如何将它们集成到模型中进行训练和评估。在神经网络中,层是构建模型的基本组件。自定义层是指根据特定的需求,通过实现特定的接口或继承特定的抽象类来创建的新的神经网络层。原创 2024-10-03 01:00:00 · 2166 阅读 · 56 评论 -
Java Deeplearning4j:高级应用 之 迁移学习
迁移学习是一种利用预训练模型进行新任务训练的技术。在深度学习中,预训练模型通常是在大规模数据集上进行训练的,具有很强的特征提取能力。通过将预训练模型应用于新的、可能较小的数据集上,可以利用预训练模型的知识,加快新任务的训练速度,提高模型的性能。微调模型是指在预训练模型的基础上,对模型的某些层进行调整,以适应新任务。在微调过程中,可以调整模型的权重、学习率等参数,以提高模型的性能。由于预训练模型已经学习到了一些通用的特征,我们只需要对其进行微调,使其能够更好地适应新任务的特定数据分布。原创 2024-10-01 00:15:00 · 1314 阅读 · 39 评论 -
Java Deeplearning4j:构建和训练循环神经网络(RNN)模型
循环神经网络RNN)是一种专门为处理序列数据而设计的神经网络类型。序列数据在现实世界中非常常见,例如时间序列数据(如股票价格随时间的变化)、自然语言文本(单词的序列)等。与传统的前馈神经网络不同,RNN具有内部的循环结构,这使得它能够处理序列中的长期依赖关系。RNN具有记忆功能,可以记住过去的信息并将其应用于当前的计算。这使得 RNN 在处理时间序列数据(如语音文本股票价格等)方面表现出色。输入层接收序列数据的输入。例如,在处理文本数据时,如果我们使用词向量表示单词,输入层的维度将取决于词向量的维度。原创 2024-09-29 10:27:47 · 2266 阅读 · 62 评论 -
Java Deeplearning4j:构建和训练卷积神经网络(CNN)模型
卷积神经网络(Convolutional Neural Network,CNN)是一种专门为处理具有网格结构数据(如图像和音频)而设计的深度学习模型。与传统的全连接神经网络相比,CNN具有一些独特的特性,使其在图像识别、目标检测等任务中表现出色。DeepLearning4J核心库在构建CNN模型时,首先需要导入DeepLearning4J的核心库。它提供了构建神经网络模型的基本框架和功能。Maven依赖:原创 2024-09-29 08:24:45 · 1919 阅读 · 51 评论 -
Java Deeplearning4j:构建和训练多层感知器(MLP)模型
多层感知器(MLP)是一种前馈人工神经网络模型。它由多个神经元(节点)组成,这些神经元分层排列,包括输入层、一个或多个隐藏层以及输出层。DenseLayer(全连接层)在中,DenseLayer是构建MLP时常用的层类型。它的每个神经元都与上一层的所有神经元相连。例如,创建一个有100个输入特征,50个神经元的DenseLayer可以这样定义:.nIn(100).nOut(50)这里的nIn参数表示输入的神经元数量,nOut参数表示输出的神经元数量,activation参数指定激活函数为ReLU。原创 2024-09-27 19:51:31 · 1134 阅读 · 19 评论 -
Java Deeplearning4j:构建和训练线性回归模型
在机器学习领域,线性回归是一种基础且广泛应用的模型。`DeepLearning4J`(DL4J)是一个用于深度学习的 `Java` 库,它提供了强大的工具来构建和训练各种类型的神经网络模型,包括线性回归模型。本文将详细介绍如何系统化地学习 `DL4J` 中的**线性回归模型**,包括理解模型的**基本组件**、**构建模型**、**训练模型**、**保存和加载模型**以及**评估模型**等步骤。原创 2024-09-27 03:49:56 · 1037 阅读 · 21 评论 -
Java Deeplearning4j:基础操作全攻略
DeepLearning4J 是一个为 Java 和 Scala 设计的开源深度学习库,它支持多种深度学习架构,如深度神经网络、卷积神经网络、循环神经网络等。易于使用:提供了简洁的 API,使得开发者可以快速构建和训练深度学习模型。与 Java 生态系统集成:可以与其他 Java 库和框架无缝集成,方便在企业级应用中使用。分布式计算支持:可以在分布式环境中运行,提高训练效率。多平台支持:支持多种操作系统和硬件平台。通过本文的介绍,你应该对的基础操作有了更深入的了解。我们学习了如何创建和操作。原创 2024-09-25 15:08:46 · 1287 阅读 · 27 评论 -
Java Deeplearning4j:数据加载与预处理(三)项目实践
DL4J:DeepLearning4J 是一个开源的深度学习库,支持多种深度学习算法和架构。它提供了丰富的 API,可以方便地构建、训练和评估深度学习模型。DataVec:DataVec 是一个用于数据处理和转换的库,它可以将不同格式的数据转换为适合深度学习模型的格式。在 DL4J 中,DataVec 被广泛用于数据加载和预处理。INDArray:INDArray 是 DL4J 中的核心数据结构,它代表一个多维数组。在文本分类项目中,我们可以将文本数据转换为向量表示,并存储在INDArray中。原创 2024-09-24 22:33:12 · 1013 阅读 · 11 评论 -
Java Deeplearning4j:数据加载与预处理(二)
(DL4J)是一个用于构建和训练深度学习模型的开源库,专为Java和JVM生态系统设计。它支持多种神经网络架构,包括多层感知器(MLP)、卷积神经网络(CNN)、循环神经网络(RNN)等。DL4J的目标是为企业级应用提供一个高效、可扩展的深度学习解决方案。DataVec是DL4J中的一个数据加载和预处理库。它提供了丰富的工具和API,用于从各种数据源(如CSV文件、图像、文本等)加载数据,并进行必要的预处理操作,如标准化归一化数据增强等。DataVec。原创 2024-09-23 17:57:33 · 1875 阅读 · 35 评论 -
Java Deeplearning4j:数据加载与预处理(一)
(DL4J)是一个用于构建和训练深度学习模型的开源库,专为Java和JVM生态系统设计。它支持多种神经网络架构,包括多层感知器(MLP)、卷积神经网络(CNN)、循环神经网络(RNN)等。DL4J的目标是为企业级应用提供一个高效、可扩展的深度学习解决方案。DataVec是DL4J中的一个数据加载和预处理库。它提供了丰富的工具和API,用于从各种数据源(如CSV文件、图像、文本等)加载数据,并进行必要的预处理操作,如标准化、归一化、数据增强等。原创 2024-09-22 17:36:12 · 1866 阅读 · 33 评论 -
Java Deeplearning4j:NDArray数据结构
NDArray顾名思义,表示任意维度的数组。NDArray是DeepLearning4J中的多维数组数据结构,用于存储和操作多维数据。它是DL4J中所有计算的核心,类似于NumPy中的ndarray。NDArray支持各种数学运算广播操作切片索引等功能,是构建和训练深度学习模型的基础。NDArray的设计初衷就是为了能够处理各种不同维度的数据。它可以是一维的向量,比如存储一组特征值;也可以是二维的矩阵,常见于图像数据(其中行可以表示图像的像素行,列可以表示不同的颜色通道或特征);原创 2024-09-20 11:47:37 · 1222 阅读 · 18 评论 -
Java Deeplearning4j:基础大纲详细整理
学习如何定义 多层感知器 (MLP) 的层结构,包括输入层隐藏层和输出层。理解不同类型的层(如DenseLayer)及其参数。在 DeepLearning4J (DL4J) 中,多层感知器 (MLP) 是一种常见的前馈神经网络,通常用于分类和回归任务。MLP 由输入层、一个或多个隐藏层和输出层组成。每层可以是全连接层(DenseLayer)或输出层(在(DL4J) 中,卷积神经网络 (CNN) 是一种常用的深度学习模型,特别适用于图像处理任务。CNN 由多个层组成,包括卷积层、池化层和全连接层。原创 2024-09-19 09:52:09 · 1325 阅读 · 27 评论 -
使用 Java Deeplearning4j 和 Imagen 训练动物图像生成模型全流程指南
在人工智能的广阔领域中,图像生成技术正日益展现出其强大的魅力和广泛的应用前景。本文将详细介绍如何使用 Java Deeplearning4j 和图像生成大模型 Imagen 来训练一个能够生成动物图像的模型,涵盖从技术选型、Maven 依赖、神经网络选择、数据集格式与准备、模型训练、Spring Boot 整合以及模型单元测试和预期输出等全流程。原创 2024-09-17 19:45:20 · 1227 阅读 · 27 评论 -
Java Deeplearning4j 支持的神经网络详解
DL4J是一个为 Java 和 Scala 设计的开源深度学习库,支持分布式计算,可以在Hadoop和Spark上运行。在Java深度学习领域,绝对算得上是一个功能强大的开源库,提供了丰富的工具和功能,如模型构建、训练、评估和可视化等。同时与其他 Java 库和框架集成良好,如 Spring Boot、Hibernate 等。支持多种神经网络类型。每种都有其独特的特点和应用场景。多层感知机(MLP)卷积神经网络(CNN)循环神经网络(RNN)长短期记忆网络(LSTM)和门控循环单元(GRU)。原创 2024-09-15 11:30:20 · 1035 阅读 · 3 评论 -
【Apache机器学习库Mahout】实用性面试题及答案:1-45题
一种常见的方法是利用 Mahout 与 Apache Hadoop 和 Apache Spark 的集成,让用户导入存储在 Hadoop 分布式文件系统 (HDFS) 或 Spark 的分布式数据结构(如 RDD(弹性分布式数据集)或 DataFrames)中的数据。在 Apache Mahout 中,可以使用各种方法将数据划分为训练集和测试集,具体取决于所使用的特定机器学习算法和用户的偏好。Flink 在流处理方面的能力补充了 Mahout 的分布式机器学习算法,实现了对大规模流数据的实时分析和决策。原创 2024-08-22 19:22:33 · 1028 阅读 · 9 评论 -
【Apache机器学习库Mahout】实用性面试题及答案:46-90题
Mahout Samsara DSL(领域特定语言)是建立在 Apache Spark 之上的高级抽象层。其主要目的是简化分布式机器学习工作流的开发。通过提供用于表达机器学习算法的声明性语法,Samsara DSL 简化了复杂数据处理管道的定义。它抽象了分布式计算的复杂性,使用户可以轻松地专注于算法设计和数据分析任务。原创 2024-08-23 23:59:43 · 561 阅读 · 1 评论 -
将【深度学习】和【Spring Boot】集成:使用 DL4J 的综合指南
示例:使用 Spring Boot、Java 和 DL4J 的贷款审批推荐系统一、场景设想您想要在“贷款审批”应用程序中构建一个微服务,根据历史数据建议是否批准或拒绝贷款申请。该建议基于使用 DL4J 训练的机器学习模型。原创 2024-08-22 15:11:50 · 1283 阅读 · 7 评论