之前的搜索二叉树大家明显可以看出它的缺点,搜索二叉树的效率为logN
,插入节点有序的时候效率退化为O(N)
平衡二叉树
解决这一问题用一个平衡因子来控制左右子树的高度差不超过1,使二叉树避免单支,保持平衡,避免单支
平衡英子
右子树-左子树的高度差
AVL树节点定义:
templete<class K,class V>
struct AVLTreeNode
{
AVLTreeNode<K,V> * _left;
AVLTreeNode<K,V> * _right;
AVLTreeNode<K,V> * _parent;
pair<K,V> _val;
int _bf;//平衡英子
AVLTreeNode(const pair<K,V> & kv)//构造函数
:_left(nullptr)
,right(nullptr)
,_parent(nullptr)
,_bf(0)
,_val(kv)
{}
}
AVL树
class AVL
{
typedef AVLTreeNode<K,V> Node;
public:
//………………
private:
Node *_root;
}
AVL树插入
- 判断插入
- 更新平衡英子
- 旋转
- 左旋
- 右旋
- 双旋
更新平衡英子
- 插入左边–,右边++
- 一直向上更新父亲节点(如果为2或者-2发生旋转停止更新,1,-1停止更新)
如图所示:
旋转
- 左旋
节点插入在C时平衡英子已不满足了,那当前树根节点高度差一定相差1,用肉眼看,把30插入60左边就平衡了,但插入b就丢失了,但b刚好可以当30的右子树(
搜索二叉左<根>右
),那么树久保持平衡了
-
右旋
-
双旋
代码
bool inster(const pair<K,V> & kv)
{
//没有节点的时候
if(_root==nullptr)
{
_root=new Node(kv);
}
//1.判断插入
Node * parent=nullptr;
Node * cur=_root;
while(cur)
{
if(cur->_val.first>kv.first)
{
parent=cur;
cur=cur->left;
}
else if(cur->_val.first<kv.first)
{
parent=cur;
cur=cur->right;
}
else
{
return false;
}
}
//插入节点
Node * present = new Node(kv);
if(parent->_val.first > kv.first)
{
parent->left=present;
present->_parent=parent;
}
else
{
parent->right=present;
present->_parent=parent;
}
//更新平衡英子
while(parent)
{
if(present==parent->right)
{
parent->_bf++;
}
else
{
parent->_bf--;
}
//parent为0的时候不需要在更新
if( parent->_bf==0)
{
break;
}
else if(parent->_bf ==2 || parent->_bf ==-2)
{
//旋转
if(parent->_bf==-2 && present->bf==-1)//右旋
{
RotateR(parent);
}
else if(parent->_bf==2 && present->bf==1)//左旋
{
RotateL(parent);
}
else if(parent->_bf==2 &&present->_bf==-1)//双旋 右 ,左
{
RotateRL(parent);
}
else if(parent->_bf==-2 && present->_bf==1)//双旋 左右
{
RotateLR(parent);
}
break;
}
}
}
void RotateR(Node* parent)//右
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
Node* ppNode = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (parent == _root)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (ppNode->_left == parent)
ppNode->_left = subL;
else
ppNode->_right = subL;
subL->_parent = ppNode;
}
parent->_bf = subL->_bf = 0;
}
void RotateL(Node* parent)//左
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* ppNode = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parent == _root)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
subR->_parent = ppNode;
}
subR->_bf = parent->_bf = 0;
}
void RotateLR(Node* parent)//左右
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == -1)
{
subL->_bf = 0;
parent->_bf = 1;
subLR->_bf = 0;
}
else if (bf == 1)
{
parent->_bf = 0;
subL->_bf = -1;
subLR->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = 0;
subL->_bf = 0;
subLR->_bf = 0;
}
else
{
assert(false);
}
}
void RotateRL(Node* parent)//右左
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
subRL->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
subRL->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = 0;
subR->_bf = 0;
subRL->_bf = 0;
}
else
{
assert(false);
}
}
总结
其实就是
把平衡因子为2的节点变为根
,那么原来根要放哪里呢?那就要看平衡因子2的节点是根的左节点还是右节点
了,如果是左节点
,那么就可以把平衡因子为2节点的右子树给根的左子树
(原来的根指向的是平衡因子为2的节点),再把根变为平衡因子为2节点的右子树
(根比平衡因子为2的节点大)
红黑树
AVL用平衡英子旋转来避免了单支的效率低的情况,但是旋转的效率也很高,那么就衍生出来红黑树,他减少了二叉树旋转的次数,所以红黑树是近似平衡。
红黑树的规则
- 每个节点不是黑色就是红色
根节点必须是黑色
一个红色节点的子节点一定是黑色的
每条路径中的黑色节点都相等
- 叶子节点都为黑(叶子==空)(不重要)
- 最长路径不超过最短路径的俩倍
如图所示:
问:
上述二叉树有多少路径?
答:
14条 ,一条完整的路径是从根到空
问:
如何控制最长路径不超过最短路径的俩倍?
答:
这个是由规则推出来的,1. 节点不是黑的就是红的 2.根一定是黑的 3.
红节点的子节点一定是黑的
4.每条路径黑色节点个数一定相同
,最短路径就是全黑,最长路径一定是一黑一红
如图所示:
问:
那最长节点超过最短节点的2倍咋办?
答:
emmmm,这是一个蠢问题,当然是旋转了呀哈哈
红黑树的实现
- 插入的节点是红是黑
- 如何旋转 (与平衡二叉一致)
答 1:
插入最好是红色节点
,如果是黑色节点插入,那么规则4就不满足了(每条路径的黑色节点个数相同),红色只需判断父亲的颜色,黑色不更改,红色则需要做对应的处理
如图所示:
处理
处理的方法之万物看叔叔
- 如果父亲为红色,叔叔为红的话,父亲叔叔变黑,并向上更新
- 如果父亲为红,叔叔为黑或不存在的话,进行旋转,父亲为黑,祖父为变红
如图所示:
旋转也是有单旋或者双旋,其实只需要判定 parent 在grendfatehr那边,且new_node在parent的那边(p在g左,n在p左单旋 , n在p右双旋)
红黑树节点
template<class K,class V>
struct RBTNode
{
RBTNode<K,V> *_left;
RBTNode<K,V> *_right;
RBTNode<K,V> *_parent;
pair<K,V> _val;
Color _col;
RBTNode(const pair<K,V>& kv)//构造函数
:_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_val(kv)
,_col(RED)
{}
};
红黑树的插入接口
其余接口与平衡二叉一致不实现
template<class K,class V>
class RBT
{
typedef RBTNode<K,V> Node;
void RotateR(Node* parent)//右
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
Node* ppNode = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (parent == _root)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (ppNode->_left == parent)
ppNode->_left = subL;
else
ppNode->_right = subL;
subL->_parent = ppNode;
}
}
void RotateL(Node* parent)//左
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* ppNode = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parent == _root)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
subR->_parent = ppNode;
}
}
public:
bool insert(const pair<K,V> &kv)
{
if(_root== nullptr)//没有节点的时候
{
Node * new_node=new Node(kv);
_root=new_node;
_root->_col=BLACK;
return true;
}
//寻找插入的节点位置
Node *cur=_root;
Node *parent=nullptr;
while(cur)
{
if(cur->_val.first > kv.first)
{
parent=cur;
cur=cur->_left;
}
else if(cur->_val.first < kv.first)
{
parent=cur;
cur=cur->_right;
}
else
{
return false;
}
}
//插入节点
Node * new_node =new Node(kv);
if(parent->_val.first > kv.first)//比节点小左边
{
parent->_left=new_node;
new_node->_parent=parent;
}
else//节点大右边
{
parent->_right=new_node;
new_node->_parent=parent;
}
//判断父亲节点颜色并对其进行更改
while(parent && parent->_col== RED)
{
Node * grandfather=parent->_parent;
Node * uncle;
if(grandfather->_left == parent)
{
uncle=grandfather->_right;
if(uncle!= nullptr && uncle->_col ==RED)//为红色的情况
{
uncle->_col=parent->_col=BLACK;
grandfather->_col=RED;
new_node=grandfather;
parent=new_node->_parent;
}
else //为黑色或空 且可能是双旋
{
if((uncle== nullptr || uncle->_col==BLACK) && parent->_left==new_node)//单旋
{
RotateR(grandfather);
grandfather->_col= RED;
parent->_col=BLACK;
}
else//双旋
{
RotateL(parent);
RotateR(grandfather);
new_node->_col=BLACK;
grandfather->_col=parent->_col=RED;
}
//旋转后没有新增节点
// 所以这条路径的黑色节点没边则不需要在向上更新
return true;
}
}
else
{
uncle=grandfather->_left;
if(uncle!= nullptr && uncle->_col ==RED)//为红色的情况
{
uncle->_col=parent->_col=BLACK;
grandfather->_col=RED;
new_node=grandfather;
parent=new_node->_parent;
}
else //为黑色或空 且可能是双旋
{
if((uncle== nullptr || uncle->_col==BLACK )&& parent->_right==new_node)//单旋
{
RotateL(grandfather);
grandfather->_col= RED;
parent->_col=BLACK;
}
else
{
RotateR(parent);
RotateL(grandfather);
new_node->_col=BLACK;
grandfather->_col=parent->_col=RED;
}
//旋转后没有新增节点
// 所以这条路径的黑色节点没边则不需要在向上更新
return true;
}
}
}
//根节点一定是黑色
_root->_col=BLACK;
}
private:
Node * _root=nullptr;
};
结尾
二叉搜索树的底层就到此为止了,那么现在map与set的底层是红黑树
,毕竟旋转次数较少
,虽然查找会差一点,但是数据越多其实没差别