Python——MySQL远程控制

目录

MySQL运程控制

1. 准备工作

2. 连接MySQL数据库

使用mysql-connector

使用PyMySQL

3. 基本CRUD操作

创建表

插入数据

查询数据

更新数据

删除数据

4. 高级操作

事务处理

使用ORM框架 - SQLAlchemy

5. 最佳实践

6. 常见错误处理

连接池

一、连接池的作用

二、优势与劣势

三、部署与使用

1. 常用库及安装

2. 基础使用示例

3. 生产环境建议

四、性能优化技巧

事务管理 

一、事务核心概念

二、典型问题场景

三、选型建议

四、Python配置示例


MySQL运程控制

MySQL是最流行的关系型数据库之一,Python通过多种方式可以与MySQL进行交互。下面我将详细介绍Python操作MySQL的常用方法和最佳实践。

1. 准备工作

在开始之前,你需要:

  1. 安装MySQL服务器
  2. 安装Python的MySQL连接库

推荐使用mysql-connector-pythonPyMySQL库:

pip install mysql-connector-python 
# 或 
pip install pymysql 

2. 连接MySQL数据库

使用mysql-connector

import mysql.connector 

# 创建连接 
conn = mysql.connector.connect(
 host="localhost",
 user="your_username",
 password="your_password",
 database="your_database" 
) 

# 创建游标 
cursor = conn.cursor() 

# 执行SQL查询 
cursor.execute("SELECT * FROM your_table") 

# 获取结果 
results = cursor.fetchall() 
for row in results: 
print(row) 

# 关闭连接 
cursor.close() 
conn.close() 

使用PyMySQL

import pymysql 

# 创建连接 
conn = pymysql.connect(
 host='localhost',
 user='your_username',
 password='your_password',
 db='your_database',
 charset='utf8mb4',
 cursorclass=pymysql.cursors.DictCursor 
) 

# 使用上下文管理器自动管理连接 
with conn:
     with conn.cursor() as cursor:
         # 执行SQL查询
         sql = "SELECT * FROM your_table"
         cursor.execute(sql)

         # 获取结果
         results = cursor.fetchall()
         for row in results:
             print(row) 

3. 基本CRUD操作

创建表

cursor.execute(""" 
CREATE TABLE IF NOT EXISTS users (
     id INT AUTO_INCREMENT PRIMARY KEY,
     name VARCHAR(255) NOT NULL,
     email VARCHAR(255) NOT NULL UNIQUE,
     created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ) 
""") 

插入数据

# 单条插入 
sql = "INSERT INTO users (name, email) VALUES (%s, %s)" 
val = ("John Doe", "john@example.com") 
cursor.execute(sql, val) 

# 多条插入 
sql = "INSERT INTO users (name, email) VALUES (%s, %s)" 
val = [
     ("Jane Smith", "jane@example.com"),
     ("Bob Johnson", "bob@example.com") 
] 
cursor.executemany(sql, val) 

# 提交事务 
conn.commit() 

查询数据

# 查询所有记录 
cursor.execute("SELECT * FROM users") 
rows = cursor.fetchall() 

# 查询单条记录 
cursor.execute("SELECT * FROM users WHERE id = %s", (1,)) 
row = cursor.fetchone() 

# 带条件的查询 
cursor.execute("SELECT name, email FROM users WHERE name LIKE %s", ("%John%",)) 
rows = cursor.fetchall() 

更新数据

sql = "UPDATE users SET name = %s WHERE id = %s" 
val = ("John Smith", 1) 
cursor.execute(sql, val) 
conn.commit() 

删除数据

sql = "DELETE FROM users WHERE id = %s" 
val = (1,) 
cursor.execute(sql, val) 
conn.commit() 

4. 高级操作

事务处理

try:
 # 开始事务
 conn.start_transaction()

 # 执行多个SQL操作
 cursor.execute(sql1, val1)
 cursor.execute(sql2, val2)

 # 提交事务 conn.commit() 
except Exception as e:
 # 发生错误时回滚
 conn.rollback()
 print(f"Transaction failed: {e}") 

使用ORM框架 - SQLAlchemy

from sqlalchemy import create_engine, Column, Integer, String 
from sqlalchemy.ext.declarative import declarative_base 
from sqlalchemy.orm import sessionmaker 

# 创建引擎 
engine = create_engine('mysql+pymysql://user:password@localhost/dbname') 

# 声明基类 
Base = declarative_base() 

# 定义模型 
class User(Base):
 __tablename__ = 'users' 
 
 id = Column(Integer, primary_key=True)
 name = Column(String(255))
 email = Column(String(255), unique=True) 

# 创建表 
Base.metadata.create_all(engine) 

# 创建会话 
Session = sessionmaker(bind=engine) 
session = Session() 

# 添加新用户 
new_user = User(name='Alice', email='alice@example.com') 
session.add(new_user) 
session.commit() 

# 查询用户 
users = session.query(User).filter_by(name='Alice').all() 
for user in users:
 print(user.name, user.email) 

5. 最佳实践

  1. 使用参数化查询‌:防止SQL注入攻击
  2. 使用上下文管理器‌:确保连接和游标正确关闭
  3. 处理异常‌:捕获并处理数据库操作中的异常
  4. 连接池‌:在高并发应用中使用连接池
  5. 索引优化‌:为常用查询字段添加索引

6. 常见错误处理

try:
 conn = mysql.connector.connect(**config)
 cursor = conn.cursor()
 cursor.execute("SELECT * FROM non_existent_table") 
except mysql.connector.Error as err:
 print(f"Error: {err}") 
finally: if 'conn' in locals() and conn.is_connected():
 cursor.close()
 conn.close()

连接池

一、连接池的作用

    数据库连接池是一种预先创建并管理数据库连接的技术,主要解决频繁创建/销毁连接的性能损耗问题。其核心思想是连接复用,应用程序从池中获取连接,使用后归还而非直接关闭。

二、优势与劣势

优势:

  1. 性能提升:减少连接创建/销毁的TCP三次握手和认证开销,降低延迟

  2. 资源控制:通过max_connections限制最大连接数,防止数据库过载

  3. 响应加速:初始化时预建连接,业务请求可直接使用

  4. 泄漏防护:超时回收机制避免连接长期占用

劣势:

  1. 需要合理配置参数(如最大/最小连接数)

  2. 连接状态维护增加复杂度

  3. 不适用于超短生命周期应用

三、部署与使用

1. 常用库及安装
# SQLAlchemy(支持多种数据库)
pip install sqlalchemy

# DBUtils(通用连接池)
pip install dbutils

# Psycopg2(PostgreSQL专用)
pip install psycopg2-binary
2. 基础使用示例

SQLAlchemy连接池配置:

from sqlalchemy import create_engine

# 带连接池的配置(连接池大小5-10)
engine = create_engine(
    "mysql+pymysql://user:pass@host/db",
    pool_size=5,
    max_overflow=5,
    pool_recycle=3600
)

DBUtils连接池示例:

from dbutils.pooled_db import PooledDB
import pymysql

pool = PooledDB(
    creator=pymysql,
    maxconnections=10,
    host='localhost',
    user='root',
    database='test'
)
conn = pool.connection()  # 获取连接
3. 生产环境建议
  1. 根据QPS设置pool_size(建议=平均并发量×1.2)

  2. 启用pool_pre_ping自动检测失效连接

  3. 使用with语句确保连接归还

  4. 监控连接池使用率(如SQLAlchemy的pool.status()

四、性能优化技巧

  1. 不同业务使用独立连接池隔离资源

  2. 动态调整连接数(如SQLAlchemy的pool_events

  3. 配合连接池使用ORM的Session缓存机制

事务管理 

一、事务核心概念

  1. ACID特性

    • 原子性(Atomicity)‌:事务是不可分割的工作单元
    • 一致性(Consistency)‌:事务前后数据库状态保持一致
    • 隔离性(Isolation)‌:并发事务互不干扰
    • 持久性(Durability)‌:事务提交后结果永久生效
  2. 隔离级别

    • READ_UNCOMMITTED(可能读取未提交数据)
    • READ_COMMITTED(避免脏读)
    • REPEATABLE_READ(避免不可重复读)
    • SERIALIZABLE(完全串行化)

四大隔离级别对比

隔离级别脏读不可重复读幻读锁机制特点
READ UNCOMMITTED无读锁,仅写锁冲突
READ COMMITTED读后立即释放共享锁
REPEATABLE READ✓*持有读锁至事务结束
SERIALIZABLE范围锁防止幻读

*注:MySQL的InnoDB通过MVCC机制在REPEATABLE READ下可避免幻读

二、典型问题场景

  1. 脏读‌:事务A读取事务B未提交的修改,B回滚导致A获得无效数据
  2. 不可重复读‌:事务A两次读取同记录,因事务B提交修改导致结果不一致
  3. 幻读‌:事务A按条件查询,事务B新增符合条件记录导致A两次结果集不同

三、选型建议

  1. 实时分析系统‌:READ UNCOMMITTED(容忍脏读换取性能)
  2. 支付系统‌:REPEATABLE READ(保证金额一致性)
  3. 票务系统‌:SERIALIZABLE(杜绝超卖风险)
  4. 常规OLTP‌:READ COMMITTED(平衡性能与一致性)

四、Python配置示例

# PostgreSQL设置隔离级别 
import psycopg2 
conn = psycopg2.connect(dsn) 
conn.set_isolation_level(
 psycopg2.extensions.ISOLATION_LEVEL_REPEATABLE_READ ) 

不同数据库对隔离级别的实现存在差异,如Oracle默认READ COMMITTED而MySQL默认REPEATABLE READ38,实际开发需结合具体数据库特性调整


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值