幸福路径

幸福路径

 

【问题描述】

有向图Gn个顶点1, 2, …, n,点i的权值为w(i)。现在有一只蚂蚁,从给定的起点v0出发,沿着图G的边爬行。开始时,它的体力为1。每爬过一条边,它的体力都会下降为原来的ρ倍,其中ρ是一个给定的小于1的正常数。而蚂蚁爬到某个顶点时的幸福度,是它当时的体力与该点权值的乘积。 我们把蚂蚁在爬行路径上幸福度的总和记为H。很显然,对于不同的爬行路径,H的值也可能不同。小Z对H值的最大可能值很感兴趣,你能帮助他计算吗?注意,蚂蚁爬行的路径长度可能是无穷的。

【输入格式】

输入文件为path.in。文件的每一行中两个数之间用一个空格隔开。 输入文件第一行包含两个正整数n, m,分别表示G中顶点的个数和边的条数。 第二行包含n个非负实数,依次表示n个顶点权值w(1), w(2), …, w(n)。 第三行包含一个正整数v0,表示给定的起点。 第四行包含一个实数ρ,表示给定的小于1的正常数。 接下来m行,每行两个正整数x, y,表示<x, y>是G的一条有向边。可能有自环,但不会有重边。

【输出格式】

输出文件path.out仅包含一个实数,即H值的最大可能值,四舍五入到小数点后一位。

【样例输入】

5 5 10.0 8.0 8.0 8.0 15.0 1

0.5

1 2

2 3

3 4

4 2

4 5

【样例输出】

18.0

 

【样例说明】

当蚂蚁的爬行路径为1→2→3→4→2→3→4→…→2→3→4→…时,H = 10.0 +8.0*0.5+8.0*0.5^2+⋯。可以证明,这个无穷序列的总和为18.0,且这就是H的最大值。 另外,若本样例中w(5)改为17.0,其余数据不变,则当路径为1→2→3→4→5时,H = 18.0625。可以证明,这就是此时H的最大值。

【数据规模】

对于20%的数据,ρ ≤0.5; 另有20%的数据,保证H的最大值在有限路径上取到; 对于100%的数据,n ≤ 100,m ≤ 1000,ρ ≤ 1 – 10^-6,w(i) ≤ 100 (i = 1, 2, …, n)。

 

 

令f[i][j][t]为从点i走到点j花2^t步的最大幸福值,(不包括一开始站在i点的那个幸福值,这样不会在i->k->j中k转移处算重复,但是注意最后结果要加上begin点的幸福值)

那么有f[i][j][t]=max{f[i][k][t-1]+f[k][j][t-1]*p^(2^(t-1))},t要稍微大一点,最起码有25吧

迭代多次即可得到答案的近似值,用到的其实是倍增的思想。

注意蚂蚁可能卡死在某个点不动,因此初始要将邻接矩阵清为-INF,然后每个点连一条边为0的自环此外注意下卡死时最后经过的那个点的权值会不会被统计, 这里可能会挂。至于自环问题,一开始没想明白,加上就A了,否则WA一个点,不过后来想了想,我觉得可能是因为这个1->2->3->4线性图,找2^2时不存在4条路啊,只能是其中一个原地不动,凑够3条,所以原数组的定义可以修改为f[i][j][t]为从点i走到点j花不超过2^t步的最大幸福值。

 1 #define ce freopen("path.in","r",stdin);
 2 #define na freopen("path.ans","w",stdout);
 3 
 4 #include<cstdio>
 5 #include<cstring>
 6 using namespace std;
 7 
 8 int n,m,v,x,y;
 9 double p,d[105];
10 double f[105][105][50];
11 double ans;
12 int main(){
13     memset(f,-5,sizeof(f));
14     scanf("%d%d",&n,&m);
15     for(int i=1;i<=n;i++){
16         scanf("%lf",&d[i]);
17         f[i][i][0]=0;
18     }
19     scanf("%d%lf",&v,&p);
20     for(int i=1;i<=m;i++){
21         scanf("%d%d",&x,&y);
22         f[x][y][0]=d[y]*p;
23     }
24     for(int q=1;q<=35;q++){
25         for(int k=1;k<=n;k++){
26             for(int i=1;i<=n;i++){
27                 for(int j=1;j<=n;j++){
28                     if(f[i][j][q]<f[i][k][q-1]+f[k][j][q-1]*p)
29                         f[i][j][q]=f[i][k][q-1]+f[k][j][q-1]*p;
30                     if(i==v){
31                         if(f[i][j][q]>ans) ans=f[i][j][q];
32                     }
33                 }
34             }
35         }
36         p*=p;
37     }
38     printf("%.1lf",ans+d[v]);
39     getchar(); getchar(); getchar();
40 }
View Code

 

posted @ 2015-10-09 20:17 Lenicodes 阅读( ...) 评论( ...) 编辑 收藏
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值