题目大意:给定一张有向图,每个点有权值,蚂蚁从某个节点出发,初始体力值为1,每走一条边体力值 ∗=p ,每经过一个点会获得幸福值为点权*体力值,求最大幸福值
题解:直接矩阵乘法floyd,大力卡精度就能过了
根据定义
初始矩阵f[0]:恰好经过一条边
f[n-1]:恰好经过n条边
注意蚂蚁可能卡死在某个点不动,因此初始要将邻接矩阵清为-INF,然后每个点连一条边权为0的自环
注意这个状态是不含有起点的贡献的,最后要加上
我的收获:23333
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define M 110
int n,m,st,cnt;
double p,mx,tp,g[M];
struct Mat{int x;double m[M][M];Mat(){x=1,memset(m,0xfe,sizeof(m));}}w;//-INF
Mat operator*(Mat a,Mat b){
Mat c;c.x=a.x;
for(int i=1;i<=a.x;i++)
for(int j=1;j<=b.x;j++)
for(int k=1;k<=a.x;k++)
c.m[i][j]=max(c.m[i][j],a.m[i][k]+b.m[k][j]*tp);
return c;
}
Mat operator^(Mat a,long long p){
Mat c;bool flag=true;
for(;p;p>>=1,a=a*a,tp*=tp)
if(p&1) {if(flag) c=a,flag=false;else c=c*a;}
return c;
}
void work()
{
tp=p;
for(double exa=p;exa>1e-10;exa*=exa) cnt++;
Mat ans=w^(1ll<<cnt);
for(int i=1;i<=n;i++) mx=max(mx,ans.m[st][i]);
printf("%.1lf\n",mx+g[st]);
}
void init()
{
int x,y;
cin>>n>>m;
for(int i=1;i<=n;i++) w.m[i][i]=0;
for(int i=1;i<=n;i++) scanf("%lf",&g[i]);
cin>>st>>p;
while(m--) scanf("%d%d",&x,&y),w.m[x][y]=g[y]*p;//1条边,要乘一下
w.x=n;
}
int main()
{
init();
work();
return 0;
}