2306: [Ctsc2011]幸福路径

题目链接

题目大意:给定一张有向图,每个点有权值,蚂蚁从某个节点出发,初始体力值为1,每走一条边体力值 =p ,每经过一个点会获得幸福值为点权*体力值,求最大幸福值

题解:直接矩阵乘法floyd,大力卡精度就能过了
根据定义
初始矩阵f[0]:恰好经过一条边
f[n-1]:恰好经过n条边

注意蚂蚁可能卡死在某个点不动,因此初始要将邻接矩阵清为-INF,然后每个点连一条边权为0的自环

注意这个状态是不含有起点的贡献的,最后要加上

我的收获:23333

#include <cmath>  
#include <cstdio>  
#include <cstring>  
#include <iostream>  
#include <algorithm>  
using namespace std;

#define M 110

int n,m,st,cnt;
double p,mx,tp,g[M];

struct Mat{int x;double m[M][M];Mat(){x=1,memset(m,0xfe,sizeof(m));}}w;//-INF

Mat operator*(Mat a,Mat b){
    Mat c;c.x=a.x;
    for(int i=1;i<=a.x;i++)
        for(int j=1;j<=b.x;j++)
            for(int k=1;k<=a.x;k++)
                c.m[i][j]=max(c.m[i][j],a.m[i][k]+b.m[k][j]*tp);
    return c;
}

Mat operator^(Mat a,long long p){
    Mat c;bool flag=true;
    for(;p;p>>=1,a=a*a,tp*=tp)
    if(p&1) {if(flag) c=a,flag=false;else c=c*a;}
    return c;
}

void work()
{
    tp=p;
    for(double exa=p;exa>1e-10;exa*=exa) cnt++;
    Mat ans=w^(1ll<<cnt);
    for(int i=1;i<=n;i++) mx=max(mx,ans.m[st][i]);
    printf("%.1lf\n",mx+g[st]);
}

void init()
{
    int x,y;
    cin>>n>>m;
    for(int i=1;i<=n;i++) w.m[i][i]=0;
    for(int i=1;i<=n;i++) scanf("%lf",&g[i]);
    cin>>st>>p;
    while(m--) scanf("%d%d",&x,&y),w.m[x][y]=g[y]*p;//1条边,要乘一下
    w.x=n;
}

int main()  
{
    init();
    work(); 
    return 0;  
}  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值