Antenna Placement
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9983 | Accepted: 4931 |
Description
The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them.
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?
Input
On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.
Output
For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.
Sample Input
2 7 9 ooo**oooo **oo*ooo* o*oo**o** ooooooooo *******oo o*o*oo*oo *******oo 10 1 * * * o * * * * * *
Sample Output
17 5
Source
考前整理模板以及找几道思路题,因为考试的时候蒟蒻要用P,所以本题代码只好用P了啦,谅解一下qwq。
题意:*代表城市,给定一个h行w列的图,在一个城市建站点,可以和它上下左右任意一个城市共用信号,问至少要建多少个站点是得所有城市都能有信号。
题解:应该还算基础,想到把每个城市变成点然后城市间边连来连去就可以了。所以呢,对于每个城市,和上下左右是城市的点连边,然后做一遍二分图匹配就可以啦,答案就是总城市数-匹配数/2(因为是无向图)。
那这题做完就不再做二分图啦~随它去吧...
const dx:array[1..4]of longint=(1,-1,0,0);
dy:array[1..4]of longint=(0,0,1,-1);
var t,cas,h,w,num,cnt,i,j,k,xx,yy,ans:longint;head,next,vet:array[0..320000]of longint;
b:array[0..41,0..15]of longint;st:ansistring;
match:array[0..1000]of longint;
vis:array[0..1000]of boolean;
procedure add_edge(u,v:longint);
begin
inc(cnt);vet[cnt]:=v;next[cnt]:=head[u];head[u]:=cnt;
end;
function dfs(k:longint):boolean;
var e,v,t:longint;
begin
e:=head[k];
while e<>-1 do
begin
v:=vet[e];
if not vis[v] then
begin
vis[v]:=true;
t:=match[v];
match[v]:=k;
if(t=-1)or(dfs(t))then exit(true);
match[v]:=t;
end;
e:=next[e];
end;
exit(false);
end;
begin
readln(t);
for cas:=1 to t do
begin
readln(h,w);
num:=0;cnt:=0;
fillchar(b,sizeof(b),0);
fillchar(head,sizeof(head),255);
for i:=1 to h do
begin
readln(st);
for j:=1 to w do
if st[j]='*' then
begin
inc(num);
b[i][j]:=num;
end;
end;
for i:=1 to h do
for j:=1 to w do
if b[i][j]>0 then
begin
for k:=1 to 4 do
begin
xx:=i+dx[k];yy:=j+dy[k];
if(xx>=1)and(xx<=h)and(yy>=1)and(yy<=w)then
begin
if(b[xx][yy]>0)then
begin
add_edge(b[i][j],b[xx][yy]);
add_edge(b[xx][yy],b[i][j]);
end;
end;
end;
end;
fillchar(match,sizeof(match),255);
ans:=0;
for i:=1 to num do
begin
fillchar(vis,sizeof(vis),false);
if(dfs(i)) then inc(ans);
end;
writeln(num-ans div 2);
end;
end.