UOJ#34.多项式乘法FFT
题目在这里呀!
嗯终于算是有点懂FFT了,可我不像其他大神那样能完完整整地讲清楚(毕竟还有一些地方还不懂qwq
这个讲解挺清晰的
既然…是一道模板题,那就贴上模板叭~(这里用到的是迭代法不是递归)
//Suplex
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define N 100000+1000
using namespace std;
const double pi=acos(-1.0);
int n,m,L;
struct complex{
double r,c;
inline complex operator + (const complex &a){return (complex){r+a.r,c+a.c};}
inline complex operator - (const complex &a){return (complex){r-a.r,c-a.c};}
inline complex operator * (const complex &a){return (complex){r*a.r-c*a.c,r*a.c+c*a.r};}
}a[N+N+N],b[N+N+N],w[N+N+N];
void FFT(complex *a,int opt){
for(int i=0,j=0;i<L;i++){
if(i>j) swap(a[i],a[j]);
for(int k=L>>1;(j ^= k)<k;k>>=1);
}
for(int len=2;len<=L;len<<=1)
{
int l=len>>1;
complex W=(complex){cos(pi/l),opt*sin(pi/l)};
for(int i=1;i<l;i++) w[i]=w[i-1]*W;
for(int i=0;i<L;i+=len)
for(int j=0;j<l;j++)
{
complex x=a[i+j],y=w[j]*a[i+j+l];
a[i+j]=x+y;a[i+j+l]=x-y;
}
}
if(opt==-1){
for(int i=0;i<L;i++) a[i].r/=L;
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].r);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].r);
w[0]=(complex){1.0,0.0};
L=1;n++;m++;
while(L<n+m) L<<=1;
FFT(a,1);FFT(b,1);
for(int i=0;i<L;i++) a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=0;i<n+m-1;i++) printf("%d ",(int)(a[i].r+0.5));
puts("");
return 0;
}