n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
示例 1:
输入:n = 4
输出:[[".Q…","…Q",“Q…”,"…Q."],["…Q.",“Q…”,"…Q",".Q…"]]
解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
输入:n = 1
输出:[[“Q”]]
提示:
1 <= n <= 9
皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。
大佬思路1:详情见下
#include <iostream>
#include <vector>
using namespace std;
//自定义函数put_queen,实现在(x,y)放置皇后,对attack数组的更新
//x,y表示放置皇后的坐标,二维数组attack表示棋盘是否可放置皇后
void put_queen(int x, int y, vector<vector<int>>&attack)
{
//方向数组,方便后面对8个方向进行标记
static const int dx[] = { -1,1,0,0,-1,-1,1,1 };
static const int dy[] = { 0,0,-1,1,-1,1,-1,1 };
attack[x][y] = 1;//将皇后位置标记位1
//通过两层循环,将皇后可能攻击到的位置进行标记
for (int i = 1; i < attack.size(); i++)//从皇后位置向1到n-1个距离延伸
{
for (int j = 0; j < 8; j++)//遍历8个方向
{
int nx = x + i * dx[j];//生成新位置的行
int ny = y + i * dy[j];//生成新位置的列
if (nx>=0 && nx<attack.size() && ny>=0 && ny<attack.size())
{
attack[nx][ny] = 1;
}
}
}
}
//回溯法求解N皇后的递归函数
//k表示当前处理的行
//n表示N皇后问题
//queen存储皇后的位置
//attack标记皇后的攻击位置
//solve存储N皇后的全部解法
void backtrack(int k, int n, vector<string>&queen, vector<vector<int>>&attack, vector<vector<string>>&solve)
{
if (k==n)//到了最后一行,找到一组解
{
solve.push_back(queen);//将结果queen存储至solve
return;
}
//遍历0至n-1列,在循环中,回溯试探皇后可知放置的位置
for (int i = 0; i < n; i++)
{
if (attack[k][i]==0)//判断当前第k行第i列是否可以放置皇后
{
vector<vector<int>>tmp = attack;//备份attack数组
queen[k][i] = 'Q';//标记该位置位Q
put_queen(k, i, attack);//更新attack数组
backtrack(k + 1, n, queen, attack, solve);//递归试探k+1行的皇后放置
attack = tmp;//恢复attack数组
queen[k][i] = '.';
}
}
}
vector<vector<string>>solveNQueens(int n)
{
vector<vector<string>>solve;//存储最后结果
vector<vector<int>>attack;//标记皇后的攻击位置
vector<string>queen;//保存皇后的位置
//使用循环初始化attack数组和queen数组
for (int i = 0; i < n; i++)
{
attack.push_back((std::vector<int>()));
for (int j = 0; j < n; j++)
{
attack[i].push_back(0);
}
queen.push_back("");
queen[i].append(n, '.');
}
backtrack(0, n, queen, attack, solve);//调用backtrack求解N皇后问题
return solve;//返回结果数组solve
}
int main()
{
vector<vector<string>>result;//设置二维字符串数组存储结果
result = solveNQueens(5);
printf("8皇后共有%d种解法:\n\n", result.size());
//cout << "8皇后共有"<<result.size()<<"种解法" << endl;
for (int i = 0; i < result.size(); i++)
{
printf("解法%d\n", i + 1);
//cout << "解法" << i + 1;
for (int j = 0; j < result[i].size(); j++)
{
printf("%s\n", result[i][j].c_str());
//cout << result[i][j].c_str();
}
cout << endl;
}
return 0;
}