目录
一.N皇后
1)问题描述
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。
示例 1:
- 输入:n = 4
- 输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
- 解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
- 输入:n = 1
- 输出:[["Q"]
2)思路
首先来看一下皇后们的约束条件:
- 不能同行
- 不能同列
- 不能同斜线
确定完约束条件,来看看究竟要怎么去搜索皇后们的位置,其实搜索皇后的位置,可以抽象为一棵树。
下面我用一个 3 * 3 的棋盘,将搜索过程抽象为一棵树,如图:
从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。
那么我们用皇后们的约束条件,来回溯搜索这棵树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了。
3)回溯三部曲
- 递归函数参数
我依然是定义全局变量二维数组result来记录最终结果。
参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了。
代码如下:
vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
- 递归终止条件
在如下树形结构中:
可以看出,当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。
代码如下:
if (row == n) {
result.push_back(chessboard);
return;
}
- 单层搜索的逻辑
递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。
每次都是要从新的一行的起始位置开始搜,所以都是从0开始。
代码如下:
for (int col = 0; col < n; col++) {
if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
chessboard[row][col] = 'Q'; // 放置皇后
backtracking(n, row + 1, chessboard);
chessboard[row][col] = '.'; // 回溯,撤销皇后
}
}
- 验证棋盘是否合法
按照如下标准去重:
- 不能同行
- 不能同列
- 不能同斜线 (45度和135度角)
代码如下:
bool isValid(int row, int col, vector<string>& chessboard, int n) {
// 检查列
for (int i = 0; i < row; i++) { // 这是一个剪枝
if (chessboard[i][col] == 'Q') {
return false;
}
}
// 检查 45度角是否有皇后
for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
// 检查 135度角是否有皇后
for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
if (chessboard[i][j] == 'Q') {
return false;
}
}
return true;
}
在这份代码中,可以发现为什么没有在同行进行检查呢?
因为在单层搜索的过程中,每一层递归,只会选for循环(也就是同一行)里的一个元素,所以不用去重了。
4)代码
char ***ans;
char **path;
int ansTop, pathTop;
//将path中元素复制到ans中
void copyPath(int n) {
char **tempPath = (char**)malloc(sizeof(char*) * pathTop);
int i;
for(i = 0; i < pathTop; ++i) {
tempPath[i] = (char*)malloc(sizeof(char) * n + 1);
int j;
for(j = 0; j < n; ++j)
tempPath[i][j] = path[i][j];
tempPath[i][j] = '\0';
}
ans[ansTop++] = tempPath;
}
//判断当前位置是否有效(是否不被其它皇后影响)
int isValid(int x, int y, int n) {
int i, j;
//检查同一行以及同一列是否有效
for(i = 0; i < n; ++i) {
if(path[y][i] == 'Q' || path[i][x] == 'Q')
return 0;
}
//下面两个for循环检查斜角45度是否有效
i = y - 1;
j = x - 1;
while(i >= 0 && j >= 0) {
if(path[i][j] == 'Q')
return 0;
--i, --j;
}
i = y + 1;
j = x + 1;
while(i < n && j < n) {
if(path[i][j] == 'Q')
return 0;
++i, ++j;
}
//下面两个for循环检查135度是否有效
i = y - 1;
j = x + 1;
while(i >= 0 && j < n) {
if(path[i][j] == 'Q')
return 0;
--i, ++j;
}
i = y + 1;
j = x -1;
while(j >= 0 && i < n) {
if(path[i][j] == 'Q')
return 0;
++i, --j;
}
return 1;
}
void backTracking(int n, int depth) {
//若path中有四个元素,将其拷贝到ans中。从当前层返回
if(pathTop == n) {
copyPath(n);
return;
}
//遍历横向棋盘
int i;
for(i = 0; i < n; ++i) {
//若当前位置有效
if(isValid(i, depth, n)) {
//在当前位置放置皇后
path[depth][i] = 'Q';
//path中元素数量+1
++pathTop;
backTracking(n, depth + 1);
//进行回溯
path[depth][i] = '.';
//path中元素数量-1
--pathTop;
}
}
}
//初始化存储char*数组path,将path中所有元素设为'.'
void initPath(int n) {
int i, j;
for(i = 0; i < n; i++) {
//为path中每个char*开辟空间
path[i] = (char*)malloc(sizeof(char) * n + 1);
//将path中所有字符设为'.'
for(j = 0; j < n; j++)
path[i][j] = '.';
//在每个字符串结尾加入'\0'
path[i][j] = '\0';
}
}
char *** solveNQueens(int n, int* returnSize, int** returnColumnSizes){
//初始化辅助变量
ans = (char***)malloc(sizeof(char**) * 400);
path = (char**)malloc(sizeof(char*) * n);
ansTop = pathTop = 0;
//初始化path数组
initPath(n);
backTracking(n, 0);
//设置返回数组大小
*returnSize = ansTop;
int i;
*returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
for(i = 0; i < ansTop; ++i) {
(*returnColumnSizes)[i] = n;
}
return ans;
}
二.解数独
1)题目描述
编写一个程序,通过填充空格来解决数独问题。
一个数独的解法需遵循如下规则: 数字 1-9 在每一行只能出现一次。 数字 1-9 在每一列只能出现一次。 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。 空白格用 '.' 表示。
一个数独。
答案被标成红色。
提示:
- 给定的数独序列只包含数字 1-9 和字符 '.' 。
- 你可以假设给定的数独只有唯一解。
- 给定数独永远是 9x9 形式的。
2)思路
棋盘搜索问题可以使用回溯法暴力搜索,只不过这次我们要做的是二维递归。
N皇后是因为每一行每一列只放一个皇后,只需要一层for循环遍历一行,递归来来遍历列,然后一行一列确定皇后的唯一位置。
本题就不一样了,本题中棋盘的每一个位置都要放一个数字(而N换后是一行只放一个皇后),并检查数字是否合法,解数独的树形结构要比N皇后更宽更深。
因为这个树形结构太大了,我抽取一部分,如图所示:
3)回溯三部曲
- 递归函数以及参数
递归函数的返回值需要是bool类型,为什么呢?
因为解数独找到一个符合的条件(就在树的叶子节点上)立刻就返回,相当于找从根节点到叶子节点一条唯一路径,所以需要使用bool返回值。
代码如下:
bool backtracking(vector<vector<char>>& board)
- 递归终止条件
本题递归不用终止条件,解数独是要遍历整个树形结构寻找可能的叶子节点就立刻返回。
不用终止条件会不会死循环?
递归的下一层的棋盘一定比上一层的棋盘多一个数,等数填满了棋盘自然就终止(填满当然好了,说明找到结果了),所以不需要终止条件!
那么有没有永远填不满的情况呢?
这个问题我在递归单层搜索逻辑里在来讲!
- 递归单层搜索逻辑
在树形图中可以看出我们需要的是一个二维的递归(也就是两个for循环嵌套着递归)
一个for循环遍历棋盘的行,一个for循环遍历棋盘的列,一行一列确定下来之后,递归遍历这个位置放9个数字的可能性!
代码如下:(详细看注释)
bool backtracking(vector<vector<char>>& board) {
for (int i = 0; i < board.size(); i++) { // 遍历行
for (int j = 0; j < board[0].size(); j++) { // 遍历列
if (board[i][j] != '.') continue;
for (char k = '1'; k <= '9'; k++) { // (i, j) 这个位置放k是否合适
if (isValid(i, j, k, board)) {
board[i][j] = k; // 放置k
if (backtracking(board)) return true; // 如果找到合适一组立刻返回
board[i][j] = '.'; // 回溯,撤销k
}
}
return false; // 9个数都试完了,都不行,那么就返回false
}
}
return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
注意这里return false的地方,这里放return false 是有讲究的。
因为如果一行一列确定下来了,这里尝试了9个数都不行,说明这个棋盘找不到解决数独问题的解!
那么会直接返回, 这也就是为什么没有终止条件也不会永远填不满棋盘而无限递归下去!
判断棋盘是否合法
判断棋盘是否合法有如下三个维度:
- 同行是否重复
- 同列是否重复
- 9宫格里是否重复
代码如下:
bool isValid(int row, int col, char val, vector<vector<char>>& board) {
for (int i = 0; i < 9; i++) { // 判断行里是否重复
if (board[row][i] == val) {
return false;
}
}
for (int j = 0; j < 9; j++) { // 判断列里是否重复
if (board[j][col] == val) {
return false;
}
}
int startRow = (row / 3) * 3;
int startCol = (col / 3) * 3;
for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
for (int j = startCol; j < startCol + 3; j++) {
if (board[i][j] == val ) {
return false;
}
}
}
return true;
}
4)代码
bool isValid(char** board, int row, int col, int k) {
/* 判断当前行是否有重复元素 */
for (int i = 0; i < 9; i++) {
if (board[i][col] == k) {
return false;
}
}
/* 判断当前列是否有重复元素 */
for (int j = 0; j < 9; j++) {
if (board[row][j] == k) {
return false;
}
}
/* 计算当前9宫格左上角的位置 */
int startRow = (row / 3) * 3;
int startCol = (col / 3) * 3;
/* 判断当前元素所在九宫格是否有重复元素 */
for (int i = startRow; i < startRow + 3; i++) {
for (int j = startCol; j < startCol + 3; j++) {
if (board[i][j] == k) {
return false;
}
}
}
/* 满足条件,返回true */
return true;
}
bool backtracking(char** board, int boardSize, int* boardColSize) {
/* 从上到下、从左到右依次遍历输入数组 */
for (int i = 0; i < boardSize; i++) {
for (int j = 0; j < *boardColSize; j++) {
/* 遇到数字跳过 */
if (board[i][j] != '.') {
continue;
}
/* 依次将数组1到9填入当前位置 */
for (int k = '1'; k <= '9'; k++) {
/* 判断当前位置是否与满足条件,是则进入下一层 */
if (isValid(board, i, j, k)) {
board[i][j] = k;
/* 判断下一层递归之后是否找到一种解法,是则返回true */
if (backtracking(board, boardSize, boardColSize)) {
return true;
}
/* 回溯,将当前位置清零 */
board[i][j] = '.';
}
}
/* 若填入的9个数均不满足条件,返回false,说明此解法无效 */
return false;
}
}
/* 遍历完所有的棋盘,没有返回false,说明找到了解法,返回true */
return true;
}
void solveSudoku(char** board, int boardSize, int* boardColSize) {
bool res = backtracking(board, boardSize, boardColSize);
}