网络流- 最大流(较麻烦的建图方式+对拆点的初级理解)

题目链接:https://cn.vjudge.net/contest/68128#problem/K

具体思路:首先 ,建图方式  源点 - > 青蛙  - > 桩子 - >桩子(拆点) - >汇点。

关于拆点,我自己目前的理解就是,当点有流量限制的时候需要拆点(好像是废话...)。当限制个数的时候,比如说这条路上最多允许一个流量,如果这条路上其他路上的流量都大于1.这个时候就需要拆点,拆点注意的三个地方,源点到图的流量,中间的过渡,到汇点的流量(好像网络流一共由这三部分构成的,,,,,,,,,,,)。从最近做的一些题目来说吧,奶牛那个题,如果不拆点的话,会发生如下这种情况。 从源点到1,2,3等都有流量,并且1,2,3到奶牛都有流量,如果说这些路都符合条件的话,不拆点的话从源点到汇点的流量就会变成3,但是事实上只允许流量最多为1。即使把所有的流量都设置为1,最大流量仍为3.所以这个时候就需要拆点,就是把奶牛拆成两个点,奶牛- > 假冒奶牛 的流量为1, 从源点出发的流连向奶牛,接下来建图的过程就应该由假冒奶牛来完成,这样的话,无论其他路的流量多大,要是想有奶牛的路,流量最大为1。这个青蛙这个题同样类似。吐过不对柱子进行拆点的话,如果有多个路连向柱子,那么当前的流量就会有错误,所以需要对柱子进行拆点。

青蛙1 - 》柱子

青蛙2- 》 柱子

青蛙3 - 》 柱子

柱子  - 》 汇点

具体看图。(有空再补)

AC代码:

#include<iostream>
#include<string>
#include<iomanip>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#include<algorithm>
#include<stdio.h>
using namespace std;
const int MAXN=100010;//点数的最大值
const int MAXM=400010;//边数的最大值
const int INF=0x3f3f3f3f;
char stone[100][100];
char leap[100][100];
struct Node
{
    int from,to,next;
    int cap;
} edge[MAXM];
int tol;
int head[MAXN];
int dep[MAXN];
int gap[MAXN];//gap[x]=y :说明残留网络中dep[i]==x的个数为y
int n;//n是总的点的个数,包括源点和汇点
void init()
{
    tol=0;
    memset(head,-1,sizeof(head));
}
void addadge(int u,int v,int w)
{
    edge[tol].from=u;
    edge[tol].to=v;
    edge[tol].cap=w;
    edge[tol].next=head[u];
    head[u]=tol++;
    edge[tol].from=v;
    edge[tol].to=u;
    edge[tol].cap=0;
    edge[tol].next=head[v];
    head[v]=tol++;
}
void BFS(int start,int end)
{
    memset(dep,-1,sizeof(dep));
    memset(gap,0,sizeof(gap));
    gap[0]=1;
    int que[MAXN];
    int front,rear;
    front=rear=0;
    dep[end]=0;
    que[rear++]=end;
    while(front!=rear)
    {
        int u=que[front++];
        if(front==MAXN)front=0;
        for(int i=head[u]; i!=-1; i=edge[i].next)
        {
            int v=edge[i].to;
            if(dep[v]!=-1)continue;
            que[rear++]=v;
            if(rear==MAXN)rear=0;
            dep[v]=dep[u]+1;
            ++gap[dep[v]];
        }
    }
}
int SAP(int start,int end)
{
    int res=0;
    BFS(start,end);
    int cur[MAXN];
    int S[MAXN];
    int top=0;
    memcpy(cur,head,sizeof(head));
    int u=start;
    int i;
    while(dep[start]<n)
    {
        if(u==end)
        {
            int temp=INF;
            int inser;
            for(i=0; i<top; i++)
                if(temp>edge[S[i]].cap)
                {
                    temp=edge[S[i]].cap;
                    inser=i;
                }
            for(i=0; i<top; i++)
            {
                edge[S[i]].cap-=temp;
                edge[S[i]^1].cap+=temp;
            }
            res+=temp;
            top=inser;
            u=edge[S[top]].from;
        }
        if(u!=end&&gap[dep[u]-1]==0)//出现断层,无增广路
            break;
        for(i=cur[u]; i!=-1; i=edge[i].next)
            if(edge[i].cap!=0&&dep[u]==dep[edge[i].to]+1)
                break;
        if(i!=-1)
        {
            cur[u]=i;
            S[top++]=i;
            u=edge[i].to;
        }
        else
        {
            int min=n;
            for(i=head[u]; i!=-1; i=edge[i].next)
            {
                if(edge[i].cap==0)continue;
                if(min>dep[edge[i].to])
                {
                    min=dep[edge[i].to];
                    cur[u]=i;
                }
            }
            --gap[dep[u]];
            dep[u]=min+1;
            ++gap[dep[u]];
            if(u!=start)u=edge[S[--top]].from;
        }
    }
    return res;
}
int main()
{
    int T;
    scanf("%d",&T);
    int num=0;
    while(T--)
    {
        init();
        int ss=0;
        // memset(Map,0,sizeof(Map));
        int nn,d;
        scanf("%d%d",&nn,&d);
        int len;
        for(int i=1; i<=nn; i++)
        {
            cin>>stone[i]+1;
            // scanf("%s",stone[i]+1);
        }
        len=strlen(stone[1]+1);
        for(int i=1; i<=nn; i++)
        {
            cin>>leap[i]+1;
            // scanf("%s",leap[i]+1);
        }
        int st=nn*len*2+1;
        int ed=st+1;
        n=ed;
        int temp;
        double  dis;
        for(int i=1; i<=nn; i++)//  st - > leap
        {
            for(int j=1; j<=len; j++)
            {
                if(leap[i][j]=='.')continue;
                addadge(st,(i-1)*len+j,1);
                ss++;
            }
        }
        for(int i=1; i<=nn; i++)  // divide stone -> stone
        {
            for(int j=1; j<=len; j++)
            {
                temp=stone[i][j]-'0';
                if(temp==0)continue;
                addadge((i-1)*len+j,nn*len+(i-1)*len+j,temp);
            }
        }
        for(int i=1; i<=nn; i++) // stone - > stone && stone - > ed
        {
            for(int j=1; j<=len; j++)
            {
                temp=stone[i][j]-'0';
                if(temp==0)continue;
                if(i+d>nn||i-d<=0||j+d>len||j-d<=0)addadge(nn*len+(i-1)*len+j,ed,temp);
                //Map[n*len+(i-1)*len+j][ed]=temp;
                for(int k=1; k<=nn; k++)
                {
                    for(int h=1; h<=len; h++)
                    {
                        temp=stone[k][h]-'0';
                        if(temp==0)continue;
                        //if(i!=k&&j!=h)continue;
                        if(i==k&&j==h)continue;
                        // if(i!=k)dis=abs(j-h);
                        // if(j!=h)dis=abs(i-k);
                        dis=sqrt((j-h)*(j-h)+(i-k)*(i-k));//距离是看两点之间的最短距离。
                        if(dis>d)continue;
                        addadge((i-1)*len+j+nn*len,(k-1)*len+h,temp);
                        //      Map[n*len+(i-1)*len+j][n*len+(k-1)*len+h]=temp;
                    }
                }
            }
        }
        int tt=ss-SAP(st,ed);
        printf("Case #%d: ",++num);
        if(tt==0)printf("no lizard was left behind.\n");
        else if(tt==1)printf("1 lizard was left behind.\n");
        else
            printf("%d lizards were left behind.\n",tt);
    }
    return 0;
}

/******
10
5 2
00000000
02000000
00321100
02000000
00000000
........
........
..LLLL..
........
........
****/

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值