BZOJ2369【Tree DP】

/* I will wait for you */

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <deque>
#include <set>
#include <map>
#include <string>
#define make make_pair
#define fi first
#define se second

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

const int maxn = 100010;
const int maxm = 1010;
const int maxs = 26;
const int inf = 0x3f3f3f3f;
const int P = 1000000007;
const double error = 1e-9;

inline int read()
{
	int x = 0, f = 1;
	char ch = getchar();
	while (ch < '0' || ch > '9')
		  f = (ch == '-' ? -1 : 1), ch = getchar();
	while (ch >= '0' && ch <= '9')
	 	  x = x * 10 + ch - '0', ch = getchar();
	return x * f;
}

struct edge 
{
	int v, next;
} e[maxn];

int n, cnt, f[maxn][20], head[maxn];

void insert(int u, int v) 
{
	e[cnt] = (edge) {v, head[u]};
	head[u] = cnt++;
	e[cnt] = (edge) {u, head[v]};
	head[v] = cnt++;
}

void dfs(int u, int p)
{
	for (int i = 1; i <= 10; i++)
		f[u][i] = i;
	
	for (int i = head[u]; i != -1; i = e[i].next) {
		int v = e[i].v;
		
		if (v != p) {
			dfs(v, u);
			for (int j = 1; j <= 10; j++) {
				int val = inf;
				for (int k = 1; k <= 10; k++)
					if (j != k)
						val = min(val, f[v][k]);
				f[u][j] += val;
			}
		}
	}
} 

int main()
{
	n = read();
	
	memset(head, -1, sizeof head);
	
	for (int i = 1; i < n; i++) {
		int u = read(), v = read();
		insert(u, v);
	}

	dfs(1, 0);
	
	int ans = inf;
	
	for (int i = 1; i <= 10; i++)
		ans = min(ans, f[1][i]);
	printf("%d\n", ans);
	
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值