提示:本文深入探讨了 Java 在 AI 开发中的技术栈
Java AI 开发技术栈详见
前言
提示:本文深入探讨了 Java 在 AI 开发中的技术栈,重点介绍 LangChain4j、Spring AI、RAG 和 MCP 等框架的功能与应用场景。
Java 在人工智能(AI)开发领域凭借其跨平台性、成熟生态和企业级支持,提供了多种框架和工具,如 LangChain4j、Spring AI、RAG(检索增强生成)和 MCP(模型-控制器-管道)等。本文将详细介绍这些技术栈的核心功能、适用场景,并对 LangChain4j 和 Spring AI 进行对比,同时提供相关资料的参考链接。
提示:通过对比分析和参考资料,助力开发者选择适合的工具构建高效的企业级 AI 解决方案。
1. Java 在 AI 开发中的优势
- 跨平台性:Java 的“一次编写,到处运行”特性使其适合分布式 AI 系统。
- 生态系统:丰富的库和框架支持数据处理、模型推理和企业集成。
- 高性能:JVM 优化和多线程支持适合大规模 AI 工作负载。
- 企业集成:无缝嵌入现有 Java 后端系统。
2. 核心 Java AI 框架与技术栈
2.1 LangChain4j
概述:LangChain4j 是 Java 生态的开源框架,简化了大语言模型(LLM)集成,支持对话系统、RAG 和工具调用。
核心功能:
- 统一 API:支持 OpenAI、Hugging Face、Ollama 等 15+ LLM 提供商和 20+ 向量数据库(如 Pinecone、Weaviate)。
- RAG 支持:通过嵌入模型和向量数据库实现文档检索和上下文增强。
- 工具调用:支持动态调用外部 API 或函数。
- 记忆管理:内置对话上下文存储,适合聊天机器人。
- 模块化:提供低级(如提示模板)到高级(如代理、RAG)工具集。
示例代码:
import dev.langchain4j.model.chat.ChatLanguageModel;
import dev.langchain4j.model.openai.OpenAiChatModel;
public class LangChain4jExample {
public static void main(String[] args) {
ChatLanguageModel model = OpenAiChatModel.withApiKey("your-api-key");
String response = model.generate("What is AI?");
System.out.println(response);
}
}
适用场景:
- 企业级聊天机器人。
- 基于 RAG 的知识库问答。
- 多模型、多向量数据库的灵活切换。
参考资料:
- 官方 GitHub:https://github.com/langchain4j/langchain4j
- 文档:https://docs.langchain4j.dev
- RAG 教程:https://docs.langchain4j.dev/categories/retrieval-augmented-generation
2.2 Spring AI
概述:Spring AI 是 Spring 生态的新框架,旨在将 AI 功能无缝集成到 Spring Boot 应用中,提供模型抽象和 RAG 支持。
核心功能:
- 模型抽象:支持 OpenAI、Hugging Face、Ollama 等,屏蔽底层差异。
- 向量数据库:支持 Cassandra、Weaviate、Pinecone 等,提供 SQL-like 元数据过滤。
- RAG 支持:模块化 RAG 架构,通过 Advisor API 提供开箱即用的 RAG 流程。
- Spring 集成:利用 Spring Boot 自动配置,简化开发。
- 工具调用:支持动态工具更新(通过 MCP)。
示例代码:
import org.springframework.ai.client.AiClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class AiController {
@Autowired
private AiClient aiClient;
@GetMapping("/generate")
public String generateResponse() {
return aiClient.generate("Summarize AI trends in 2025.");
}
}
适用场景:
- Spring Boot 应用快速集成 AI。
- 微服务架构中的 AI 后端。
- 语义搜索和推荐系统。
参考资料:
- 官方文档:https://docs.spring.io/spring-ai/reference
- GitHub:https://github.com/spring-projects/spring-ai
- RAG 模块:https://docs.spring.io/spring-ai/reference/rag.html
2.3 RAG(检索增强生成)
概述:RAG 结合检索和生成,增强 LLM 的上下文准确性,广泛用于知识库问答。Java 通过 LangChain4j 和 Spring AI 实现 RAG。
工作原理:
- 检索:从向量数据库检索与查询相关的文档。
- 生成:将检索结果作为上下文输入 LLM,生成精准回答。
关键组件:
- 嵌入模型:如 Sentence Transformers,生成文本向量。
- 向量数据库:Weaviate、Pinecone、Elasticsearch 等。
- LLM:通过 LangChain4j 或 Spring AI 调用。
适用场景:
- 企业文档问答。
- 客户支持自动化。
参考资料:
- LangChain4j RAG:https://docs.langchain4j.dev/categories/retrieval-augmented-generation
- Spring AI RAG:https://docs.spring.io/spring-ai/reference/rag.html
2.4 MCP(模型-控制器-管道)
概述:MCP(Model Context Protocol)是一种协议,允许 LLM 动态调用外部工具或 API,扩展其功能。Java 通过 LangChain4j 的 MCP 模块实现。
工作原理:
- 模型:加载和推理 AI 模型(如 DeepLearning4j、ONNX)。
- 控制器:处理业务逻辑,通常基于 Spring MVC。
- 管道:管理数据预处理、推理和后处理。
适用场景:
- 复杂 AI 工作流(如图像处理)。
- 企业系统集成。
参考资料:
- LangChain4j MCP 教程:https://glaforge.dev/posts/2024/using-mcp-with-langchain4j
- Anthropic MCP 文档:https://docs.anthropic.com
2.5 其他框架
- DeepLearning4j:支持 CNN、RNN,适合图像和序列处理。[https://deeplearning4j.org](https://deeplearning4j.org)
- TensorFlow Java:运行预训练模型。https://www.tensorflow.org/jvm
- ONNX Runtime:跨平台模型推理。[https://onnxruntime.ai](https://onnxruntime.ai)
- Apache OpenNLP:NLP 任务如分词、实体识别。https://opennlp.apache.org
3. LangChain4j 与 Spring AI 对比
特性 | LangChain4j | Spring AI |
---|---|---|
生态集成 | 通用 Java 生态,支持 Spring Boot、Quarkus 等。 | 深度集成 Spring Boot,适合 Spring 生态。 |
模型支持 | 15+ LLM 提供商(如 OpenAI、Ollama、Gemini),全面支持。 | 支持主流模型,但部分模型(如 Google Gemini)支持尚未完整。 |
向量数据库 | 20+ 数据库(如 Pinecone、Weaviate、Milvus),切换灵活。 | 支持多种数据库,提供 SQL-like 过滤 API。 |
RAG 实现 | 提供 DefaultRetrievalAugmentor,适合多种 RAG 场景。 | 模块化 RAG 架构,通过 Advisor API 提供开箱即用流程。 |
工具调用 | 支持工具调用和 MCP 集成,动态性强。 | 支持工具调用,近期新增动态工具更新(MCP)。 |
文档与社区 | 文档结构较零散,需参考 GitHub 和示例。 | 文档清晰,Spring 官方支持,适合新手。 |
开发进度 | 快速发展,1.0.0-rc1 已发布(2025 年 5 月)。 | 新项目,功能快速迭代,但部分功能尚未稳定。 |
适用场景 | 复杂 AI 应用、多模型切换、独立部署。 | Spring Boot 项目、快速原型开发、企业集成。 |
选择建议:
- 选择 LangChain4j:如果你需要灵活的模型和数据库支持、复杂的 RAG 管道或独立于 Spring 的部署,LangChain4j 更适合。它的社区活跃,功能全面,适合需要高定制化的项目。
- 选择 Spring AI:如果你已经在 Spring 生态中,Spring AI 的无缝集成和自动配置能显著提升开发效率。适合快速原型开发和 Spring Boot 项目,但需关注其功能成熟度。
4. 典型技术栈
- 后端:Spring Boot / Quarkus。
- AI 框架:LangChain4j 或 Spring AI。
- 向量数据库:Weaviate / Pinecone / Elasticsearch。
- 推理:DeepLearning4j / ONNX Runtime。
- 数据处理:Apache Spark / Spring Batch。
- 部署:Docker + Kubernetes。
5. 挑战与优化
- 性能:模型推理延迟高,建议使用 GPU 或 GraalVM 优化。
- 内存:JVM 垃圾回收可能影响实时推理,需调整参数。
- 生态:Java AI 生态较 Python 弱,需借助 ONNX 或 Hugging Face 模型转换。
6. 结论
Java 通过 LangChain4j 和 Spring AI 等框架为 AI 开发提供了强大支持。LangChain4j 适合灵活、高定制化的场景,而 Spring AI 更适合 Spring 生态的快速开发。结合 RAG 和 MCP,Java 开发者可以构建企业级的 AI 应用。选择框架时,需根据项目需求、生态集成和开发效率权衡。