Java AI 开发技术栈详见

提示:本文深入探讨了 Java 在 AI 开发中的技术栈


前言

提示:本文深入探讨了 Java 在 AI 开发中的技术栈,重点介绍 LangChain4j、Spring AI、RAG 和 MCP 等框架的功能与应用场景。

Java 在人工智能(AI)开发领域凭借其跨平台性、成熟生态和企业级支持,提供了多种框架和工具,如 LangChain4j、Spring AI、RAG(检索增强生成)和 MCP(模型-控制器-管道)等。本文将详细介绍这些技术栈的核心功能、适用场景,并对 LangChain4j 和 Spring AI 进行对比,同时提供相关资料的参考链接。


提示:通过对比分析和参考资料,助力开发者选择适合的工具构建高效的企业级 AI 解决方案。

1. Java 在 AI 开发中的优势

  • 跨平台性:Java 的“一次编写,到处运行”特性使其适合分布式 AI 系统。
  • 生态系统:丰富的库和框架支持数据处理、模型推理和企业集成。
  • 高性能:JVM 优化和多线程支持适合大规模 AI 工作负载。
  • 企业集成:无缝嵌入现有 Java 后端系统。

2. 核心 Java AI 框架与技术栈

2.1 LangChain4j

概述:LangChain4j 是 Java 生态的开源框架,简化了大语言模型(LLM)集成,支持对话系统、RAG 和工具调用。

核心功能

  • 统一 API:支持 OpenAI、Hugging Face、Ollama 等 15+ LLM 提供商和 20+ 向量数据库(如 Pinecone、Weaviate)。
  • RAG 支持:通过嵌入模型和向量数据库实现文档检索和上下文增强。
  • 工具调用:支持动态调用外部 API 或函数。
  • 记忆管理:内置对话上下文存储,适合聊天机器人。
  • 模块化:提供低级(如提示模板)到高级(如代理、RAG)工具集。

示例代码

import dev.langchain4j.model.chat.ChatLanguageModel;
import dev.langchain4j.model.openai.OpenAiChatModel;

public class LangChain4jExample {
    public static void main(String[] args) {
        ChatLanguageModel model = OpenAiChatModel.withApiKey("your-api-key");
        String response = model.generate("What is AI?");
        System.out.println(response);
    }
}

适用场景

  • 企业级聊天机器人。
  • 基于 RAG 的知识库问答。
  • 多模型、多向量数据库的灵活切换。

参考资料

  • 官方 GitHub:https://github.com/langchain4j/langchain4j
  • 文档:https://docs.langchain4j.dev
  • RAG 教程:https://docs.langchain4j.dev/categories/retrieval-augmented-generation

2.2 Spring AI

概述:Spring AI 是 Spring 生态的新框架,旨在将 AI 功能无缝集成到 Spring Boot 应用中,提供模型抽象和 RAG 支持。

核心功能

  • 模型抽象:支持 OpenAI、Hugging Face、Ollama 等,屏蔽底层差异。
  • 向量数据库:支持 Cassandra、Weaviate、Pinecone 等,提供 SQL-like 元数据过滤。
  • RAG 支持:模块化 RAG 架构,通过 Advisor API 提供开箱即用的 RAG 流程。
  • Spring 集成:利用 Spring Boot 自动配置,简化开发。
  • 工具调用:支持动态工具更新(通过 MCP)。

示例代码

import org.springframework.ai.client.AiClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class AiController {
    @Autowired
    private AiClient aiClient;

    @GetMapping("/generate")
    public String generateResponse() {
        return aiClient.generate("Summarize AI trends in 2025.");
    }
}

适用场景

  • Spring Boot 应用快速集成 AI。
  • 微服务架构中的 AI 后端。
  • 语义搜索和推荐系统。

参考资料

  • 官方文档:https://docs.spring.io/spring-ai/reference
  • GitHub:https://github.com/spring-projects/spring-ai
  • RAG 模块:https://docs.spring.io/spring-ai/reference/rag.html

2.3 RAG(检索增强生成)

概述:RAG 结合检索和生成,增强 LLM 的上下文准确性,广泛用于知识库问答。Java 通过 LangChain4j 和 Spring AI 实现 RAG。

工作原理

  1. 检索:从向量数据库检索与查询相关的文档。
  2. 生成:将检索结果作为上下文输入 LLM,生成精准回答。

关键组件

  • 嵌入模型:如 Sentence Transformers,生成文本向量。
  • 向量数据库:Weaviate、Pinecone、Elasticsearch 等。
  • LLM:通过 LangChain4j 或 Spring AI 调用。

适用场景

  • 企业文档问答。
  • 客户支持自动化。

参考资料

  • LangChain4j RAG:https://docs.langchain4j.dev/categories/retrieval-augmented-generation
  • Spring AI RAG:https://docs.spring.io/spring-ai/reference/rag.html

2.4 MCP(模型-控制器-管道)

概述:MCP(Model Context Protocol)是一种协议,允许 LLM 动态调用外部工具或 API,扩展其功能。Java 通过 LangChain4j 的 MCP 模块实现。

工作原理

  • 模型:加载和推理 AI 模型(如 DeepLearning4j、ONNX)。
  • 控制器:处理业务逻辑,通常基于 Spring MVC。
  • 管道:管理数据预处理、推理和后处理。

适用场景

  • 复杂 AI 工作流(如图像处理)。
  • 企业系统集成。

参考资料

  • LangChain4j MCP 教程:https://glaforge.dev/posts/2024/using-mcp-with-langchain4j
  • Anthropic MCP 文档:https://docs.anthropic.com

2.5 其他框架

  • DeepLearning4j:支持 CNN、RNN,适合图像和序列处理。[https://deeplearning4j.org](https://deeplearning4j.org)
  • TensorFlow Java:运行预训练模型。https://www.tensorflow.org/jvm
  • ONNX Runtime:跨平台模型推理。[https://onnxruntime.ai](https://onnxruntime.ai)
  • Apache OpenNLP:NLP 任务如分词、实体识别。https://opennlp.apache.org

3. LangChain4j 与 Spring AI 对比

特性LangChain4jSpring AI
生态集成通用 Java 生态,支持 Spring Boot、Quarkus 等。深度集成 Spring Boot,适合 Spring 生态。
模型支持15+ LLM 提供商(如 OpenAI、Ollama、Gemini),全面支持。支持主流模型,但部分模型(如 Google Gemini)支持尚未完整。
向量数据库20+ 数据库(如 Pinecone、Weaviate、Milvus),切换灵活。支持多种数据库,提供 SQL-like 过滤 API。
RAG 实现提供 DefaultRetrievalAugmentor,适合多种 RAG 场景。模块化 RAG 架构,通过 Advisor API 提供开箱即用流程。
工具调用支持工具调用和 MCP 集成,动态性强。支持工具调用,近期新增动态工具更新(MCP)。
文档与社区文档结构较零散,需参考 GitHub 和示例。文档清晰,Spring 官方支持,适合新手。
开发进度快速发展,1.0.0-rc1 已发布(2025 年 5 月)。新项目,功能快速迭代,但部分功能尚未稳定。
适用场景复杂 AI 应用、多模型切换、独立部署。Spring Boot 项目、快速原型开发、企业集成。

选择建议

  • 选择 LangChain4j:如果你需要灵活的模型和数据库支持、复杂的 RAG 管道或独立于 Spring 的部署,LangChain4j 更适合。它的社区活跃,功能全面,适合需要高定制化的项目。
  • 选择 Spring AI:如果你已经在 Spring 生态中,Spring AI 的无缝集成和自动配置能显著提升开发效率。适合快速原型开发和 Spring Boot 项目,但需关注其功能成熟度。

4. 典型技术栈

  • 后端:Spring Boot / Quarkus。
  • AI 框架:LangChain4j 或 Spring AI。
  • 向量数据库:Weaviate / Pinecone / Elasticsearch。
  • 推理:DeepLearning4j / ONNX Runtime。
  • 数据处理:Apache Spark / Spring Batch。
  • 部署:Docker + Kubernetes。

5. 挑战与优化

  • 性能:模型推理延迟高,建议使用 GPU 或 GraalVM 优化。
  • 内存:JVM 垃圾回收可能影响实时推理,需调整参数。
  • 生态:Java AI 生态较 Python 弱,需借助 ONNX 或 Hugging Face 模型转换。

6. 结论

Java 通过 LangChain4j 和 Spring AI 等框架为 AI 开发提供了强大支持。LangChain4j 适合灵活、高定制化的场景,而 Spring AI 更适合 Spring 生态的快速开发。结合 RAG 和 MCP,Java 开发者可以构建企业级的 AI 应用。选择框架时,需根据项目需求、生态集成和开发效率权衡。

我是将军,我一直都在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值