目录
一、引言
在数据仓库的生命周期中,数据回溯是一项高频且高风险的操作。随着业务需求的迭代、数据治理规范的完善以及合规性要求的提升,历史数据的修正与重构已成为数仓工程师的核心挑战之一。数据回溯并非简单的“重跑任务”,它需要平衡数据准确性、资源成本与业务影响。本文将系统探讨数据回溯的触发场景、核心原则、典型案例及质量保障方法,为数据工程师提供可落地的实践指南。以下为某同学面试中被问到该问题时的模拟场景,文末结尾附面试如何满分式回答该问题
目录
在数据仓库的生命周期中,数据回溯是一项高频且高风险的操作。随着业务需求的迭代、数据治理规范的完善以及合规性要求的提升,历史数据的修正与重构已成为数仓工程师的核心挑战之一。数据回溯并非简单的“重跑任务”,它需要平衡数据准确性、资源成本与业务影响。本文将系统探讨数据回溯的触发场景、核心原则、典型案例及质量保障方法,为数据工程师提供可落地的实践指南。以下为某同学面试中被问到该问题时的模拟场景,文末结尾附面试如何满分式回答该问题