目标检测共性问题与详解

1、目标检测一阶段和两阶段的核心区别?

二阶段的核心思想是首先提出proposal框,通过第一阶段网络回归预测出目标框的位置、大小及前景的概率,第二阶段通过另一个网络回归出目标框的大小、位置及类别;一阶段的核心思想是对于输入图像,直接回归出大小、位置及类别

2、目标检测两阶段比一阶段精度高的原因?

1)、正负样本不均衡:

二阶段在RPN网络中对前景和背景进行了分类和检测,这样就可以选择性的选择样本,正负样本趋于平衡,然后对一些重点参数进行分类训练,二一阶段既要做分类也要定位,最后基层中1*1的Conv的loss都混合在一起,没有明确的分工,哪些是做分类,哪些是回归,学习难度就增加了

2)、样本的不一致性

NMS

3、如何解决目标检测中密集遮挡问题?

对于非目标造成的遮挡:一般都是加 掩膜、扰动、提高算法能力加强训练;

对于检测目标造成的遮挡:一般通过smooth L1使回归目标与GT框接近

4、狭长目形状目标检测有什么合适方法?

使用可旋转的 bounding box进行标注; 手工设计 anchors

5、如何解决动态目标检测?

1)、光流法:基于梯度的方法,利用图像序列的时空微分计算2d速度场(光流),计算简单效果好

2)、相邻帧差法:前后两帧图像对应的像素值相减,在环境亮度变化不大的环境下,如果差值很小,认为物体是静止的,反之是运动的;

3)、背景差法:将输入图像和背景模型进比较,通过判定灰度或用直方图统计灰度值来判断异常和分割运动

6、FPN的作用?

FPN是卷积神经网络中图像金字塔的应用,顶层特征上采样后和底层特征融合,每层独立预测。高层特征向底层特征融合,增加底层特征表达能力,提升性能;不同尺度特征可以分配到不同预测层,达到分而治之。通过1 * 1 的卷积调整通道数,然后直接 add,之后进行 3 * 3 的卷积操作,消除上采样的混叠效应。缺点是消耗内存。

7、为什么FPN采用融合以后效果要比使用pyramidal feature hierarchy这种方式要好?

卷积过程中会存在像素错位的问题,上采样很好的缓解了像素不准的问题;

backbone 可以分为浅层网络和深层网络。浅层网络负责提取边缘特征,深层网络可以提取更高级的语义特征,通过 FPN网络,可以将深层提取到的语义特征和浅层网络提取的边缘特征进行融合,指导浅层网络进行识别。浅层网络感受野比较小,适合小目标,深层网络感受野比较大,适合大目标

8、如何解决小目标识别问题?

小目标:32 * 32 ,现有数据集占比少、分辨率低、图像模糊、携带的信息少、能提取到的特征少;网络计算过程中为了加快计算,通常都会有下采样,信息损失较多。

1)、利用 GAN网络生成高分辨率图片;

2)、Data Augmentation(数据增强):随机裁剪、旋转、缩放和马赛克,copy pasting:增加小目标数量,缩放和拼接;

3)、修改模型输入尺寸:

4)、修改小目标的 Anchor;

6)、多尺度学习。FPN、空洞卷积,通过多尺度将下采样前的特征进行保留,尽力保留小目标;

7)、减小下采样的stride步长;

8)、SPP模块:增加感受野,对小目标有效果;

9)、损失函数:小目标大权重

10)、在Head 和Backbone部分添加注意力机制,来增强目标特征提取能力

9、YOLO和 SSD的区别?

yolo:将物体检测定义为bbox和分类置信度的回归问题。将整张图像输入,划分为S*S个grid,每个cell预测b个bbox及对应的分类置信度。分类置信度是bbox属于某个物体的概率与真是IOU相乘的结果;

ssd:空间问题:不同尺度下的特征预测不同的物体

yolo:卷积层后连接全连接层,只利用了最高层featureMaps,ssd是金字塔结构利用了不同层的featureMaps,在多个featureMaps上同时进行softmax分类和位置回归

9、前景 背景样本不均衡解决方案?

硬采样方法、软抽样方法、无抽样方法、生成方法

1)、Focal Loss:在训练的过程中调整每个样本迭代的权重,即把搞置信度的样本损失降低

10、如何解决训练数据样本过少的问题?

利用预训练的模型进行迁移学习(fine-tuning)

11、如何解决类别不平衡问题?

Focal Loss: 转注难样本。可以动态调整权重。对正负样本进行加权,使得所有样本都可以得到学习,在学习的过程中将容易分类的样本权重降低,难的样本权重调高

12、NMS的改进思路?

使用自适应的方法在目标系数时使用小阈值,目标稠密时使用大阈值,如Adaptive NMS;

13、CIOU:重叠面积、中心点距离、长宽比。是在DIoU的基础上增加了检测框尺度的loss,增加了长和宽的loss,这样预测框就会更加符合真实框

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值