计算机视觉领域中的特征描述和检测是一项重要任务,它可以在图像中找到关键点,并生成对这些关键点的描述。其中一种常用的特征描述和检测方法是SURF(Speeded-Up Robust Features,加速稳健特征)算法。本文将介绍SURF算法的原理,并给出用Matlab实现SURF特征提取和匹配的代码。
- SURF算法原理
SURF算法是基于SIFT(Scale Invariant Feature Transform,尺度不变特征变换)算法的改进版本。它通过使用积分图像和快速Hessian矩阵来加速特征检测和描述子计算过程。
首先,SURF算法使用高斯差分函数来计算图像的尺度空间。然后,在每个尺度下,通过对图像进行积分操作得到积分图像。接着,利用尺度空间的高斯差分图像计算Hessian矩阵的行列式,并通过非极大值抑制和亚像素插值来检测关键点。最后,利用求取Hessian矩阵的行列式的方向导数,计算特征点的主方向。
对于每个关键点,SURF算法通过在关键点周围的邻域内计算梯度直方图来生成描述子。具体而言,SURF算法将关键点的邻域分为若干个子区域,并统计每个子区域的梯度方向和幅值。最后,将这些统计结果组成一个向量作为特征点的描述子。
- Matlab实现SURF特征提取和匹配代码
下面给出用Matlab实现SURF特征提取和匹配的代码示例: <