改进YOLO系列——YOLOv: SIoU、EIoU、WIoU、Focal_xIoU和MPDIoU的全面汇总

本文深入探讨了YOLOv目标检测算法的改进技术,包括SIoU、EIoU、WIoU、Focal_xIoU和MPDIoU,这些方法通过优化IoU,提高目标检测的精度和效率,特别关注了重叠目标的处理。文章提供了相关损失函数的源代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv是一系列广受欢迎的目标检测算法,以其高效的实时检测能力而闻名。为了进一步提升YOLOv的性能,研究者们提出了一些新的训练策略和损失函数。在本文中,我们将介绍YOLOv中几种重要的改进技术:SIoU、EIoU、WIoU、Focal_xIoU和MPDIoU,并提供相应的源代码实现。

  1. SIoU(Soft Intersection over Union)
    在传统的目标检测中,常用的IoU(Intersection over Union)衡量了预测框和真实框之间的重叠程度。然而,IoU在处理高度重叠目标时存在不足。SIoU通过引入模糊逻辑,将预测框和真实框之间的交集和并集计算转化为模糊集合的交集和并集计算,从而更好地处理重叠目标。

下面是计算SIoU的源代码:

def compute_SIoU(bbox_pred, bbox_gt):
    xA 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值