YOLOv是一系列广受欢迎的目标检测算法,以其高效的实时检测能力而闻名。为了进一步提升YOLOv的性能,研究者们提出了一些新的训练策略和损失函数。在本文中,我们将介绍YOLOv中几种重要的改进技术:SIoU、EIoU、WIoU、Focal_xIoU和MPDIoU,并提供相应的源代码实现。
- SIoU(Soft Intersection over Union)
在传统的目标检测中,常用的IoU(Intersection over Union)衡量了预测框和真实框之间的重叠程度。然而,IoU在处理高度重叠目标时存在不足。SIoU通过引入模糊逻辑,将预测框和真实框之间的交集和并集计算转化为模糊集合的交集和并集计算,从而更好地处理重叠目标。
下面是计算SIoU的源代码:
def compute_SIoU(bbox_pred, bbox_gt):
xA