Py||Three sum

题目描述
Find the sum of the following three numbers, and keep the result of 2 decimal places.

1.Sum of 1~a
2.Sum of the square of 1~b
3.Sum of the reciprocal of 1~c.
输入
a b c, 3 integers less than or equal to 100

输出
1+2+…+a + 12+22+…+b^2 + 1/1+1/2+…+1/c
样例输入 Copy
100 50 10
样例输出 Copy
47977.93

a,b,c=map(int,input().split())
s=0
for i in range(1,a+1):
    s=s+i
for i in range(1,b+1):
    s=s+i*i
for i in range(1,c+1):
    s=s+1/i
print('%.2f'%s)```

class PointnetFPModule(nn.Module): r"""Propigates the features of one set to another""" def __init__(self, *, mlp: List[int], bn: bool = True): """ :param mlp: list of int :param bn: whether to use batchnorm """ super().__init__() self.mlp = pt_utils.SharedMLP(mlp, bn=bn) def forward( self, unknown: torch.Tensor, known: torch.Tensor, unknow_feats: torch.Tensor, known_feats: torch.Tensor ) -> torch.Tensor: """ :param unknown: (B, n, 3) tensor of the xyz positions of the unknown features :param known: (B, m, 3) tensor of the xyz positions of the known features :param unknow_feats: (B, C1, n) tensor of the features to be propigated to :param known_feats: (B, C2, m) tensor of features to be propigated :return: new_features: (B, mlp[-1], n) tensor of the features of the unknown features """ if known is not None: dist, idx = pointnet2_utils.three_nn(unknown, known) dist_recip = 1.0 / (dist + 1e-8) norm = torch.sum(dist_recip, dim=2, keepdim=True) weight = dist_recip / norm interpolated_feats = pointnet2_utils.three_interpolate(known_feats, idx, weight) else: interpolated_feats = known_feats.expand(*known_feats.size()[0:2], unknown.size(1)) if unknow_feats is not None: new_features = torch.cat([interpolated_feats, unknow_feats], dim=1) # (B, C2 + C1, n) else: new_features = interpolated_feats new_features = new_features.unsqueeze(-1) new_features = self.mlp(new_features) return new_features.squeeze(-1)运行时报错: File "/root/autodl-tmp/project/tools/../pointnet2_lib/pointnet2/pointnet2_modules.py", line 165, in forward new_features = torch.cat([interpolated_feats, unknow_feats], dim=1) # (B, C2 + C1, n) RuntimeError: Sizes of tensors must match except in dimension 2. Got 64 and 256 (The offending index is 0)
05-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值