RDKit | 基于RDKit探索化学空间-smiles悬停 环境Win10 RDKit2021.09.2 Python=3.7基于RDKit探索化学空间-smiles悬停导入库import sysimport osimport pandas as pdimport numpy as npimport altair as altfrom rdkit import Chemfrom rdkit import rdBasefrom rdkit.Chem import AllChemfrom rdkit.Chem import
Nat. Aging︱老药新用发现——西地那非有助于预防或治疗老年痴呆 2021年12月6日,克利夫兰医学中心Lerner研究所方坚松博士(第一作者,现广州中医药大学副研究员)等联合在Nature 子刊Nature Aging上在线发表了题为“Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer’s disease”的研究.
NeurIPS-21 | MGSSL: 基于官能团的分子属性预测图网络自监督预训练 本文介绍一篇来自中国科学技术大学刘淇教授课题组和腾讯量子实验室联合发表的一篇文章。该文章提出了基于官能团的分子属性预测图网络自监督预训练方法MGSSL。MGSSL结合化学领域知识,在大量无标签分子数据中划分官能团和构建官能团树,并进一步通过官能团生成式自监督任务,使得预训练的图网络可以学习到官能团的结构和语义信息,提高下游分子属性预测任务的效果。1.研究背景分子属性预测任务对于药物合成和筛选具有重要意义,例如新冠病毒药物筛选。传统通过实验和理论计算的方法的得到分子属性耗时且昂贵。近年来,基于深.
一小时讲懂图神经网络在分子上的应用 介绍:图神经网络在分子上的应用是当前的研究热点。这个课件主要目标是用一小时给领域初学者讲清楚基础知识和背景,当前的研究热点,以及重要的工作。更重要的是,该课件内附很多领域内数据、公开赛、算...
Nat. Commun.|概率蛋白质序列模型的生成能力 本文介绍了由坦普尔大学Vincenzo Carnevale和Allan Haldane共同通讯发表在Nature Communications的研究成果:本文提出了一个新的标准来度量蛋白质序列生成模型(GPSM)的准确性和生成能力,并使用该标准比较了不同GPSM的生成能力。与之前的度量标准相比,能够直接测量高阶边缘值,衡量GPSM捕获高阶协变的能力,对GPSM的准确性和生成能力有更加直接和科学的度量。1.背景介绍蛋白质多序列比对(MSA)突变模式解码的最新研究进展突出了突变协变在确定蛋白质功能.
用于分子生成的数据高效性图语法学习 近年来分子生成问题收到了很多关注。但是现有的方法都是基于深度神经网络,需要在很大的数据集上训练。在实践中,由于劳动密集型实验和数据收集,特定类别化学数据集的规模通常是有限的(例如,几十个样本)。这对深入学习生成模型全面描述分子设计空间提出了相当大的挑战。另一个主要挑战是只产生物理上可合成的分子。这对于基于神经网络的生成模型来说是一项非常重要的任务,因为相关的化学知识只能从有限的训练数据中提取和概括。此篇论文中,作者提出了一个数据高效性的生成模型,可以从比普通基准小几个数量级的数据集中学习。此方法的核..
CIKM 2021 | 基于IPCA的多属性分子优化 今天给大家介绍以色列理工学院Kira Radinsky课题组发表在CIKM会议上的一篇文章“Multi-Property Molecular Optimization using an Integrated Poly-Cycle Architecture”。分子先导优化是药物发现的一项重要任务,重点是生成类似于候选药物但具有增强属性的分子。大多数先前的工作都集中在优化单个属性上。然而,在实际环境中,作者希望产生满足多个约束条件的分子,例如,效力和安全性。同时优化这些属性是困难的,主要是由于缺乏满足所有约束.
Sci. Adv. | 新算法识别治疗肺动脉高压的候选抗癌药物 癌症治疗药物正在被考虑用于治疗如肺动脉高压(PH)等罕见的非癌性疾病,但还缺乏有效的计算筛选这些药物治疗疾病的方法。2021年10月20日,来自匹兹堡大学医学院及匹兹堡大学医学中心、普雷里维尤农工大学(Prairie View A&M University,PVAMU)、哈佛大学、MIT和波士顿儿童医院等11所大学和医疗机构的30多位研究员在Science Advances上联合发表了一项重大研究成果“Computational repurposing of therapeutic small.
J. Cheminform. | DrugEx v2:多重药理学中基于pareto的多目标强化学习的药物分子从头设计... 本文介绍的是由荷兰莱顿药物研究学术中心、西安交通大学电子与信息工程学院和莱顿高级计算机科学研究所联合发表在Journal of Cheminformatics上的研究成果。作者在之前的一项研究中提出了一种名为DrugEx的药物分子生成方法,将探索策略集成到基于RNN的强化学习中,以提高生成分子的多样性。在本文中,作者通过多目标优化扩展DrugEx算法,以生成针对多个靶标或一个特定靶标的类药物分子,同时避免脱靶(本研究中的两个腺苷受体,A1AR和A2AAR,以及钾离子通道hERG)。该模型使用RNN作为智能.
ICLR 2022 under review|化学反应感知的分子表征学习 今天给大家介绍一篇关于分子表征学习的文章。分子表征学习(MRL)旨在将分子嵌入到实向量空间中。然而,现有的基于SMILES(简化分子线性输入系统)或GNN(图神经网络)的MRL方法要么以SMILES字符串作为输入,难以编码分子的结构信息,要么过度强调GNN结构的重要性,而忽视了其泛化能力。因此,作者提出使用化学反应来协助学习分子表征,其核心思想在于保持分子在嵌入空间中的化学反应的等价性,即强制让每个化学方程式的反应物嵌入和生成物嵌入的总和相等,该限制在保持嵌入空间的有序性和提高分子嵌入的泛化能力中被证明..
NeurIPS 2021 | 通过动态图评分匹配预测分子构象 从 2D 分子图中预测稳定的 3D 构象一直是计算化学中的一个长期挑战。而最近,机器学习方法取得了相比传统的实验和基于物理的模拟方法更优异的成绩。这些方法主要侧重于模拟分子图上相邻原子之间的局部相互作用,而忽略了非键合原子之间的长程相互作用。然而,这些未成键的原子在 3D 空间中可能彼此接近,模拟它们的相互作用对于准确确定分子构象至关重要,尤其是对于大分子和多分子复合物。在本文中,作者提出了一种称为动态图评分匹配 (DGSM) 的分子构象预测新方法,该方法通过在训练和推理过程中根据原子之间的...
[Life Sciences.AI]专栏介绍及内容分类(持续更新......) 主要记录多肽和蛋白等生物大分子相关的操作和与人工智能的结合。蛋白相关蛋白Ramachandran(拉氏图、拉曼图)的绘制和可视化Biopython | 计算蛋白质的接触图(contact map)RDKit相关RDKit | 读取PDB文件并可视化...
Biopython | 计算蛋白质的接触图(contact map) contact map蛋白质接触图使用二元二维矩阵表示三维蛋白质结构的所有可能的氨基酸残基对之间的距离。计算contact map导入库import pandas as pdimport numpy as npfrom Bio import SeqIOimport matplotlib.pyplot as pltimport requests from sklearn.metrics import pairwise_distances%matplotlib inl...
蛋白Ramachandran(拉氏图、拉曼图)的绘制和可视化 蛋白Ramachandran(拉氏图、拉曼图)的绘制环境Win10 Biopython = 1.79 Python = 3.7.9导入库import mathimport sysimport osimport matplotlib.pyplot as pltimport numpy as npfrom Bio import PDBfrom matplotlib import colors定义Ramachandran plot函数def plot_ramacha
QUARK的增强版C-QUARK问世,有效提升蛋白质结构从头预测精度 2021年8月18日,密西根大学张阳教授团队在Nature Communications上发表论文“Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions”。基于序列的接触预测在辅助非同源蛋白质结构建模方面具有相当大的前景,但这种方法通常需要许多同源序列以及足够数量的正确接触才能实现蛋白质的正确折叠。作者研究开发了一种方法:C-QUARK,它集成...
Nat. Commun. | 从单细胞转录组数据中学习可解释的细胞和基因签名嵌入 本文介绍由加拿大麦吉尔大学与蒙特利尔高等商学院、北京大学、复旦大学的研究人员联合发表在Nature Communications的研究成果:本文作者提出了单细胞嵌入式主题模型scETM(single-cell Embedded Topic Model)用于解决大规模scRNA-seq数据集的整合分析。scETM利用可迁移的基于神经网络的编码器,和一个通过矩阵三角分解而具有可解释的线性解码器。scETM同时学习一个编码器网络从而推测细胞类型混合物和一组高度可解释的基因embeddings,主题embed...
Nat. Commun. | msiPL:质谱数据分析的新工具 今天给大家介绍来自哈佛医学院、麻省理工学院以及东北大学(美国)团队发表在Nature Communications上的文章,文章提出一个变分自编码器的概率模型(msiPL)用于学习质谱图像的低维嵌入表示。该模型可分析不同类型质谱仪和不同组织类型的质谱图像;并在3个公开的质谱成像(MSI)数据集以及2个由该论文作者收集整理的MSI数据集上进行了实验,实验结果表明msiPL可以有效的分析这些MSI数据集。1研究背景质谱成像(MSI)是一种用于质谱分析的技术,用于可视化分子(比如生物标志物、...