自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

DrugAI

Fight Disease With Code ! Fight Disease With DT !

  • 博客(737)
  • 资源 (7)
  • 收藏
  • 关注

原创 [Life Sciences.AI]专栏介绍及内容分类(持续更新......)

主要记录RDKit,分子生成,多肽和蛋白等生物大分子相关的操作和与人工智能的结合。蛋白相关蛋白Ramachandran(拉氏图、拉曼图)的绘制和可视化Biopython | 计算蛋白质的接触图(contact map)RDKit相关RDKit | 读取PDB文件并可视化...

2021-11-03 13:09:35 1407

原创 “RDKit | 化学信息学与AI”专栏介绍及专栏内容分类(持续更新......)

“RDKit | 化学信息学与AI”专栏介绍 介绍RDKit相关知识点和运用以及RDKit作为处理化学、生物、药学和材料学科中分子数据作为可输入机器学习和深度学习模型的重要工具应用。内容涵盖了基于RDKit的Python3的分子的读写、化合物的分子指纹和分子描述符计算、化合物的2D/2D比对、化合物相似性搜索、化合物骨架分析和亚结构搜索、RMSD计算与构象生成优化、分子相似图与聚...

2019-12-25 17:26:25 8509 3

原创 新颖拓扑指纹助力虚拟筛选:ToDD革新计算机辅助药物发现之路

今天我们介绍由Novartis集团的Novartis与德克萨斯大学达拉斯分校的Baris Coskunuzer为第一作者发表在NeurIPS 2022会议上的工作,文章介绍了一种新的虚拟筛选方法——ToDD模型,该方法使用了多参数持久性同调(MP)来生成化合物的拓扑指纹。因此,本文为了解决以上问题,提出了一种新的方法——ToDD,利用多参数持久性同调算法生成多维向量的拓扑指纹,并利用原子亚结构的周期性属性提取它们在多个分辨率级别上的持久性同调特征。利用多维持久性同调,生成化合物的拓扑指纹。

2023-05-10 00:03:25 1108 1

原创 Nature | 通用医学人工智能基础模型

更灵活的交互:GMAI提供了通过自定义查询与模型进行交互的能力,使得不同受众更容易理解AI模型的输出,并在不同任务和环境中提供前所未有的灵活性。最终,GMAI为医疗保健带来了前所未有的可能性,支持医生完成各种重要任务,克服沟通障碍,使高质量的医疗保健更广泛地可及,并减轻医生的行政负担,使他们有更多时间与患者交流。此外,通过解锁上下文学习能力,基于 GMAI 的文本生成蛋白质模型可以通过几个示例指令和序列来动态定义新的生成任务,例如生成能够在满足其他限制条件的情况下与指定靶标高亲和结合的蛋白质。

2023-05-09 00:01:23 492

原创 Nature | 生成式人工智能如何构建更好的抗体

疫情高峰期,研究人员竞相开发一些首批有效的COVID-19治疗方法:从已经康复的人的血液中分离出来的抗体分子。现在,科学家已经证明,生成式人工智能(AI)可以通过一些繁琐的过程提供捷径,提出增强抗病毒(如SARS-CoV-2和埃博拉病毒)抗体效力的序列。上周在《自然·生物技术》杂志上发表的一项研究是日益增长的努力的一部分,这些努力是应用类似于ChatGPT人工智能平台背后的“神经网络”来进行抗体设...

2023-05-09 00:01:23 755

原创 NeurIPS 2022 | 正则化分子构象场

本文的实验结果表明,所提出的正则化分子构象场模型(Regularized Molecular Conformation Fields)能够在有限的样本量下,实现高效、准确地预测有机分子的三维构象。此外,作者还研究了模型表现的上限和下限,并发现使用分子片段作为构象生成的基本单元,极大地简化了模型,避免了需要生成大量无用的变量。我们的模型是物理驱动的,其中心思想是有效地模拟在减少的构象空间中控制动力学模式的联合概率分布,以实现能量上有利的构象生成。最后一步是根据预测的二面角和片段构象组装预测的分子构象。

2023-05-08 00:02:39 602

原创 ProbTransformer:应对RNA折叠等自然过程数据模糊的神秘力量

本文展示了该方法的好处:(1)在一个合成任务上获得了学习隐藏数据分布的能力,(2)在RNA折叠方面的最先进的结果显示了在高度模糊的数据上的优势,(3)通过隐式学习底层分布和优于现有工作,展示了其在基于性质的分子设计上的生成能力。本文称之为均值推断,与样本推断相对应。ProbTransformer是第一个已知的RNA折叠模型,可以为给定的RNA序列提供多种正确的结构建议,这为RNA结构预测的新研究路径打开了大门,这些研究路径与RNA结构动力学的实验证据一致,例如,NMR研究,如磨损、凸起迁移和波动碱基对。

2023-05-07 00:02:20 648

原创 Nucleic Acids Res. | PASSer: 快速准确预测蛋白质变构位点

变构调控是蛋白质活性调控中关键的生物学过程。变构过程指的是蛋白质与小分子结合改变蛋白质的构象,导致其生物活性改变的现象。变构调控过程的一些特征可以应用于药物设计:(a)变构位点在蛋白质进化中具有高度特异性,(b)变构药物可以激活或抑制蛋白质活性,产生潜在的治疗效果,(c)基于变构位点的治疗效果是可控的。出于这些原因,变构位点的研究对于变构药物的开发至关重要,并在近年中得到广泛重视。2023年4月2...

2023-05-07 00:02:20 257

原创 Nat. Commun. | 无需参数的几何深度学习,可准确预测蛋白质结合界面

模型界面预测的质量非常高,将预测的界面映射到UniProt注释的特征表明,它们与预期的结合界面的功能具有一致性,结果如上图a所示。值得注意的是,47%的UniProt注释的突变位点位于预测的界面中,其中28%对应致病的自然变异位点,14%对应良性自然变异位点,而在随机残基中处于界面内的基线为19%,如上图b所示。鉴于蛋白质-蛋白质相互作用预测的结果,作者扩展了模型以发现和识别更多类型的界面,从而得到了一个通用的PeSTo模型,可以预测蛋白质与其他蛋白质以及核酸、离子、配体和脂质之间的相互作用界面。

2023-05-05 00:02:22 533

原创 ICLR2023 | 基于几何结构预训练的蛋白质表示学习

为了填补这一差距,最近的研究利用大量未标记的蛋白质序列数据来学习蛋白质的有效表示,然而这些方法没有利用可用的蛋白质结构信息,而蛋白质结构已被证明是蛋白质功能的决定因素。通过多个基准任务的全面实验验证,文章中的模型在从头开始训练时效果优于以前的编码器,并且在使用更少的数据进行预训练的情况下实现堪比甚至超越最先进的基线方法的效果。需要注意的是,作者的模型是在不到100万个结构的数据集上进行预训练的,而所有基于序列的预训练基线都是在百万或十亿级别的序列数据库上进行预训练的。这证明了作者预训练策略的有效性。

2023-05-04 00:01:27 319

原创 GeneGPT 利用生物医学信息工具增强大型语言模型

作者将提出的GeneGPT方法与各种基准进行比较,包括基于GPT的通用领域LLMs,如GPT-2、GPT-3和ChatGPT,以及基于生物医学领域的GPT-2大小的LLMs,如BioGPT和BioMedLM,以及New Bing,这是一种检索增强的LLM,可以访问Bing搜索引擎检索到的相关网页。基因组位置任务:GeneGPT还在所有基因组位置任务上取得了最先进的性能,包括一次性基因SNP关联任务(1.00准确率),以及零次基因位置任务(0.62准确率)和零次SNP位置任务(1.00准确率)。

2023-05-03 00:02:55 320

原创 Science | 利用强化学习进行蛋白质的自上而下设计

作者建立了一个树搜索,每个步骤中都在不断增长的链的N端或C端添加一个短的蛋白质片段。给定单体中螺旋的长度和数量以及总体组装体的大小的规格,作者从一个短的螺旋片段开始,在指定的上限距离内随机放置,随机取向,初始化了数百万条MCTS轨迹,并为每个轨迹执行了10,000次迭代,以生成大量多样化的结构。MCTS方法在理论测试中生成了紧密填充的二十面体组装体,这些组装体跨越了与天然和先前的新生二十面体不同的结构空间,比以前描述的任何蛋白质二十面体都要短,并且孔隙度可与进化生成的密集填充的衣壳相媲美(图1D)。

2023-05-02 00:02:27 433

原创 揭秘PLNet:用泊松对数正态图网络分析助力单细胞RNA测序数据处理大突破

今天我们介绍一篇来自北京大学数学科学学院的肖飞轶、唐俊杰发表在NeurIPS 2022会议上的工作,该文章研究了用于计数数据的图形模型估计方法,应用于单细胞基因网络分析。文章介绍了PLN图形模型的概念及其在单细胞基因调控网络分析中的应用。研究表明,该图形模型能够较好地解释单细胞基因表达数据,有助于揭示基因网络的调控机制。文章还探讨了该模型的应用前景和改进方向。背景介绍高斯图模型已在许多不同领域广泛应用于直接交互推理。然而,在一些现代应用中,如单细胞RNA测序(scRNA-seq)研究,观察到的

2023-05-02 00:02:27 290

原创 Nature | 从头设计具有超螺旋匹配的模块化肽结合蛋白质

在此,受自然和重组蛋白质-肽系统的启发,作者设计由重复单元组成的蛋白质,这些蛋白质与具有重复序列的肽结合,蛋白质和肽的重复单元之间具有一对一的对应关系。文章的研究表明,通过匹配重复蛋白和重复肽构象的超螺旋参数,并在匹配的蛋白和肽重复之间引入特定的氢键和疏水作用,可以设计模块化蛋白,这些蛋白以高亲和力和特异性地结合到扩展肽上。第一个挑战对于模块化和可扩展的序列识别至关重要:如果蛋白质中的单个重复单元将以相同的方向结合到肽上的单个重复单元,那么蛋白质和肽上的重复单元的几何相位必须是兼容的。

2023-05-01 00:01:48 397

原创 Nat. Commun. | 基于最优传输的单细胞数据集成统一计算框架

单细胞数据集成可以提供细胞的全面分子视图。然而,如何整合异质性单细胞多组学以及空间分辨的转录组学数据仍然是一个重大挑战。为此,作者提出了uniPort,这是一种结合耦合变分自动编码器(coupled-VAE)和小批量不平衡最优传输(Minibatch-UOT)的统一单细胞数据集成框架。它利用高度可变的通用基因和数据集特异性基因进行集成,以处理数据集之间的异质性,并可扩展到大规模数据集。uniPort 将异质性单细胞多组学数据集嵌入到共享的潜在空间。它还可以进一步构建一个用于跨数据集基因插补的参考图谱。

2022-12-17 00:01:32 1457 1

原创 DrugnomeAI: 靶标成药性预测模型

2022年11月,communication biology杂志上刊登了一篇来自英国剑桥大学的名为“DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets”的研究论文。该文章针对靶点成药性预测问题,提出了一个名为DrugnomeAI的预测模型...

2022-12-10 00:09:38 922

原创 Nat. Commun. | Ⅱ型糖尿病控制不良怎么办?专注于HbA1c进行综合多种用药治疗的综合比较为您提供优化方案...

糖化血红蛋白(HbA1c)是红细胞中的血红蛋白与血清中的糖类(主要指葡萄糖)通过非酶反应相结合的产物。糖化血红蛋白浓度可有效地反映过去8~12周平均血糖水平。因Ⅱ型糖尿病的治疗效果与糖化血红蛋白的含量有关。美国的Elevance Health Palo Alto研究人员采用一种结合深度学习、因果推断和网络荟萃分析(Network meta-analysis, NMA)的方法,通过分析大量Ⅱ型糖尿病患者的治疗数据来估计联合疗法对Ⅱ型糖尿病的实际比较疗效。

2022-12-09 00:01:36 750

原创 Nat. Commun. | DeepPROTACs: 基于深度学习的PROTACs降解药效预测模型

传统疗法依靠小分子抑制剂作为作用模式(MOA)实现占位驱动药理学。该方法存在无法处理不可成药的靶点、脱靶毒性、不良副作用、耐药性等缺点。单克隆抗体和RNA干扰(RNAi)方法开始补充小分子抑制剂方法,但仍存在抗体难以穿过细胞膜,RNAi分子本身的口服生物利用度和组织分布较差等弱点。鉴于以上情况,本文采用PROTACs技术作为MOA。蛋白水解靶向嵌合体(PROTACs)自2001年诞生以来,已成为利用事件驱动MOA的一项十分具有吸引力的技术。

2022-12-07 00:01:17 767

原创 Nat. Commun. | 深度学习将大分子分解为独立的马尔可夫域

​此次为大家分享的是来自Nature Communiations 上的一篇题为"Deep learning to decompose macromolecules into independent Markovian domains" 的文章,来自德国柏林自由大学、美国德克萨斯州休斯顿莱斯大学的Frank Noé团队。对越来越大的蛋白质进行动力学建模兴趣日益浓厚,但目前缺乏收集足够的状态概率或状态间转换统计数据的能力,因为对于大分子系统,亚稳态的数量随大小呈指数增长。

2022-12-06 00:01:22 546

原创 多尺度生成扩散模型预测蛋白-配体复合物结构的动态骨架

作者提出了一种名为NeuralPLexer的扩散模型框架,这一框架能够利用蛋白的骨架模板以及分子图的输入,快速预测蛋白-配体复合物的结构以及它们的波动。另外,本文发现当NeuralPLexer应用于蛋白质折叠因为配体存在而显著改变的系统时,这一框架可以完善类结合态蛋白的结构。这一结果表明,数据驱动的方法可以捕获蛋白质和小分子实体之间的结构协作性,为新药物靶点的计算识别和功能小分子和配体结合蛋白的端到端可微设计展示了方向和前景。

2022-10-10 00:01:46 972

原创 Nat. Rev. Genet. | 通过可解释人工智能从深度学习中获得遗传学见解

基于深度学习的人工智能(AI)模型现在代表了基因组学研究中进行功能预测的最先进水平。然而,模型预测的基础往往是未知的。对于基因组学研究人员来说,这种缺失的解释性信息往往比预测本身更有价值,因为它可以使人们对遗传过程有新的认识。作者回顾了可解释人工智能(xAI)新兴领域的进展,以启发生命科学研究人员对复杂深度学习模型的洞察力。之后,作者分类讨论了模型解释的方法,包括直观地理解每种方法的工作原理及其在典型高通量生物数据集中的基本假设和局限性。

2022-10-09 00:01:15 811

原创 Nat. Mach. Intel. | ReLSO: 具有正则化潜在空间优化的基于Transformer的蛋白生成

本文引入了正则化潜在空间优化(ReLSO),这是一种基于深度Transformer的自动编码器,它具有高度结构化的潜在空间,经过训练可以联合生成序列并预测适应度。作者团队在几个公开可用的蛋白质数据集上评估了这种方法,观察到ReLSO的序列优化效率更高。

2022-10-04 19:15:39 669

原创 由复合嵌入模型分解的单细胞成对关系

作者提出了一种名为SPURCE的可扩展机器学习方法,旨在系统地确定嵌入单细胞RNA序列数据中常见细胞间的通信模式。作者将该方法应用于研究肿瘤微环境,并整合了多个乳腺癌数据集,发现了七个经常观察到的相互作用特征和潜在的基因-基因相互作用网络。实验结果表明,通过不同的相互作用模式而不是已知标记基因的静态表达,可以更好地理解肿瘤异质性的一部分,尤其是同一亚型内的肿瘤异质性。

2022-10-01 13:56:47 483

原创 Cell | 深度突变学习预测SARS-CoV-2受体结合域组合突变对ACE2结合和抗体逃逸的影响...

SARS-CoV-2的持续变异以及对疫苗和中和抗体产生耐药性变种的出现,有可能延长COVID-19流行的时间。SARS-CoV-2变种的产生部分是由于病毒突刺蛋白,特别是ACE2,与受体结合域(RBD)的突变产生的。ACE2也是中和抗体的主要靶点。作者提出了一种基于机器学习的蛋白质工程技术——深度突变学习(DML)。DML能对ACE2结合和抗体逃逸的影响做出准确预测,并且能查询数十亿RBD变体组合突变的大规模序列空间。高度多样化的SARS-CoV-2变种已经被确定来自多种进化路线。

2022-09-06 00:00:56 1841

原创 使用图生成多任务模型缩小基于靶标和基于细胞的药物发现之间的差异

作者提出了一种基于图的多任务深度学习模型(MATIC)来识别同时具有靶标抑制和细胞活性的化合物。在SARS-CoV-2 数据集上,MATIC模型比传统方法在筛选体内有效化合物方面更具优势。作者探索了模型的可解释性,发现靶标抑制(体外)或细胞活性(体内)任务学习的特征与分子性质相关性和原子功能存在差异。基于这些发现,作者利用基于蒙特卡洛算法的强化学习模型生成具有体外和体内功效的新型多属性化合物。

2022-09-05 00:00:44 1119

原创 全球人工智能(AI)在药物发现中的应用市场--行业趋势和2029年预测

全球人工智能(Artificial Intelligence, AI)在药物发现中的应用,按应用(候选新药、药物优化和再利用、临床前试验和批准、药物监测、寻找新的疾病相关靶标和通路、了解疾病机制、聚集和综合信息、形成和鉴定假设、新药设计、寻找旧药的药物靶标和其他)、技术(机器学习、深度学习、自然语言处理和其他)、药物类型(小分子和大分子)、服务(软件和服务)、适应症(免疫肿瘤学、神经变性疾病、心脏病和其他疾病)。最终用途(合同研究组织 (CRO)、制药和生物技术公司、研究中心和学术机构等)行业趋势和到 20

2022-09-04 00:00:42 1276

原创 KDD 2022| 使用约束能量模型的抗体CDR 设计

近年来涌现出许多计算设计抗体CDR环的工作,但面临着CDR 环维持特定几何形状的挑战。在这篇文章中,作者设计了一个约束流形来表征 CDR 环的几何约束,接着设计了约束流形中的能量模型Constrained Energy Model (CEM)。

2022-09-03 00:00:46 647

原创 Nat. Commun. | 核酸聚合物生成,机器学习来帮忙

虽然体外筛选是探索大范围序列空间的有效方法,但由于选择引起的序列收敛,以及有限的测序深度,使得序列的搜索空间仅局限在少数区域。为了解决该问题,作者提出结合湿实验和机器学习方式去探索未被湿实验检索的序列空间。该论文通过体外筛选,发现了与柔红霉素具有高亲和力(KD=5-65 nM)的高度侧链功能化的核酸聚合物(HFNAP)。然后利用该数据训练条件变分自编码器(CVAE)模型,生成了与柔红霉素(daunomycin)高度亲和(KD=9-26nM)且独特多样的HFNAP序列。该论文将体外筛选与机器学习模型耦合,直接

2022-09-02 16:33:02 746

原创 KDD 2022 | 编程指南:生命科学中的图神经网络

本文介绍由亚马逊的研究团队推出的应用于生命科学的图神经网络指南《Graph Neural Networks in Life Sciences: Opportunities and Solutions》,这个工作发表在2022年数据挖掘顶会KDD上。图结构数据在生命科学以及医疗场景无处不在,最近很多研究把原来依赖于描述性数据分析的问题转化成依赖于生物网络的问题,例如图神经网络 (GNNs)。与其它领域相比,生命科学的问题有其自身的独特性和细微的差别。

2022-09-01 00:00:54 719

原创 基于3D等变图转换的条件抗体设计

作者提出了一种多通道等变注意网络 (MEAN),这是一种能够共同设计 CDR 的 1D 序列和 3D 结构的端到端模型。具体而言,MEAN 通过导入包括目标抗原和抗体轻链在内的额外成分,将抗体设计表述为条件图翻译问题。然后, MEAN 采用E(3)-equivariant 消息传递以及注意机制来更好地捕捉不同组件之间的几何相关性。最后,它通过多轮渐进式全镜头方案输出 1D 序列和 3D 结构。

2022-08-30 00:00:04 694

原创 scGEMA:基于单细胞多组学增强子的基因调控网络推断

作者提出了scGEMA模型,一种基于单细胞多组学增强子的基因调控网络推断方法,通过结合单细胞基因表达和染色质可及性谱来推断基因调控网络。该模型能够研究动态生物过程的复杂基因调控机制,如细胞分化和疾病驱动的细胞重塑。作者还提供了一个控制人类心肌梗死中肌成纤维细胞激活的基因调控网络的案例研究。

2022-08-29 00:00:59 695

原创 KDD '22 | 物理模型增强伪标记的 T 细胞受体-肽相互作用预测

今天介绍一篇来由美国NEC实验室Erik Kruus等人于2022年8月在线发表在KDD上的文章。在这篇文章中,作者团队提出通过TCR-肽对的物理建模来扩展训练集,以解决当前数据集中出现的数据稀缺问题。实验证明,用物理建模和数据增强的伪标记来训练深度神经网络,比现有两个数据集中的基线有所改进。1介绍成功预测TCR与肽之间的相互作用是开发个性化药物和疫苗的关键一步,被称为免疫学的圣杯。TCR是具有两...

2022-08-25 00:00:06 1022

原创 Nat. Biomed. Eng.| 综述:医学和医疗保健中的自监督学习

自监督学习通过构建一系列的自监督任务来进行预训练,使得模型可以提取到更有用的特征,然后在有标签的数据集中进行进一步训练,使得模型在标注数据较少的条件下也能获得较好的泛化能力。文章展望了自监督学习应用于AI医疗的发展趋势,并介绍了两类近年来被广泛研究的用于 AI 医疗的自监督的预训练方法:对比学习和生成学习。

2022-08-24 00:00:10 1096

原创 OpenMM | 蛋白质的分子动力学轨迹分析

基于OpenMM模拟的蛋白质分子动力学轨迹分析()MDAnalysis

2022-08-23 16:52:33 820

原创 基于LSTM的分子生成入门

基于LSTM的分子生成入门。

2022-08-23 15:36:06 758

原创 基于人工智能(AI)的蛋白结构预测工具合集

基于人工智能(AI)的蛋白结构预测工具合集(AlphaFold2, RoseTTAFold, OpenFold, Uni-Fold, HelixFold, ESM-Fold, OmegaFold等)

2022-08-23 14:59:38 3117

原创 RDKit | 使用 RDKit 通过氨基酸对肽进行着色

使用 RDKit 通过氨基酸对肽进行着色

2022-08-23 10:10:02 512

原创 RDKit | 建立溶解度预测的LightGBM回归模型

基于RDKit建立溶解度预测的LightGBM回归模型

2022-08-22 10:06:15 645

原创 Bioinformatics | MICER: 用于分子图像字幕的预训练编码-解码架构

该文章受编码器-解码器架构的启发,提出了MICER分子图像识别架构,结合迁移学习、注意力机制和几种数据构造策略增强不同数据集的有效性和可塑性;并评估了不同因素对该架构的影响以及数据集错误分析,为后续研究提供方向。该方法在构造的数据集以及基准测试集上较传统的方法取得了显著的提升。

2022-08-22 00:00:59 621

原创 抗体优化新方法:通过AI预测亲和力和自然度

利用人工智能对抗体进行优化的基于高通量亲和数据训练的深层语境语言模型(deep contextual language models trained on high-throughput affinity data),并运用名为ACE和SPR的方法,用于生成抗体结合亲和力的相对传统方法而言更优的测量,然后基于两种不同的抗体证明了可以定量预测未知抗体序列变体的结合。

2022-08-21 00:00:12 1169

RDKit Documentation Release 2019.09.1.pdf

开源化学信息学工具包RDKit的手册。RDKit提供各种功能,如不同的化学I/O格式,包括SMILES/SMARTS,结构数据格式(SDF),Thor数据树(TDT),Sybyl线符号(SLN),mol2和蛋白质结构文件(PDB)。子结构搜索; 标准SMILES; 手性支持;化学转化;化学反应;分子序列化;相似性/多样性选择;二维药效团;三维维药效团;分层子图/片段分析; Bemis和Murcko骨架;逆合成组合分析及分子碎裂(RECAP); 多分子最大共同亚结构;功能图;基于形状的相似性;基于RMSD的分子比对;基于形状的对齐;使用Open3-DALIGN算法的无监督分子-分子比对;与PyMOL进行3D可视化集成;功能基团过滤;分子描述符库;相似图;机器学习等等

2019-12-26

ActivePerl-5.26_Win_x64.zip

Perl在windows下的安装包,最近发现Perl安装包下载特别麻烦,所以上传一个下载好的方便大家。

2019-10-10

基于神经网络的溶解度预测和回归分析的数据集文件

博文:基于神经网络的溶解度预测和回归分析https://blog.csdn.net/u012325865/article/details/82725777数据集文件。

2018-09-16

pymol-2.1.0-cp36-cp36m-win

pymol2.1基于python3.6,最新的免费释放版本,大分子作图最实用的软件。 安装见链接https://blog.csdn.net/u012325865/article/details/74012128

2018-05-18

2017-Bioinformatics-Volume II- Structure, Function, and Applications

生物信息学方面的书籍,值得推荐。里面很多入门知识和工具的讲解。

2018-05-18

2017-Tutorials in chemoinformatics

化学性吸入损伤方面的书籍,里面有很多代码实例,值得学习。

2018-05-18

pymol-1.8.6.1-cp36-cp36m-win_amd64.whl

pymol1.8.6基于python3.6,大分子作图最实用的软件。

2017-06-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除