自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

DrugAI

Fight Disease With Code ! Fight Disease With DT !

  • 博客(631)
  • 资源 (8)
  • 论坛 (2)
  • 收藏
  • 关注

原创 “RDKit | 化学信息学与AI”专栏介绍及专栏内容分类(持续更新......)

“RDKit | 化学信息学与AI”专栏介绍 介绍RDKit相关知识点和运用以及RDKit作为处理化学、生物、药学和材料学科中分子数据作为可输入机器学习和深度学习模型的重要工具应用。内容涵盖了基于RDKit的Python3的分子的读写、化合物的分子指纹和分子描述符计算、化合物的2D/2D比对、化合物相似性搜索、化合物骨架分析和亚结构搜索、RMSD计算与构象生成优化、分子相似图与聚...

2019-12-25 17:26:25 4086

翻译 药物开发的社交图谱

Social Graphs for Drug Development通过提供更好的清晰度和对异构数据集的访问,构建社交图谱(知识图谱)以改善临床试验的流程并降低成本。The Valley of Death阿斯利康的健康信息学总监Paul Agapow在Grakn Labs的第一次全球用户大会Grakn Cosmos上讲述了他的团队在构建社交图谱以减少临床试验招募时的时间和减少资源的工作。药物开发是一个非常困难,旷日持久且昂贵的过程。当一家制药公司开始生产一种新药时,它已...

2021-01-18 17:18:33 56

原创 Drug Discov. Today | 药物发现中的先进机器学习技术

今天给大家介绍一篇由Abdul W.Basit等人2020年12月5日发表在Drug Discovery Today上的一篇综述文章” Advanced machine-learning techniques in drug discovery”。机器学习(ML, machine learning)在药物发现中的受欢迎程度持续增长,取得了令人印象深刻的结果。随着其使用的增加,其局限性也变得明显。这些局限性包括它们对大数据的需求、数据的稀疏性以及缺乏可解释性。此外,这些技术也变得很明显,它们并不是真正的自主技

2021-01-16 15:07:30 63

原创 Nat. Commun. | 深度学习探索可编程RNA开关

1.背景具有特定生物学功能的工程RNA分子在合成生物学中发挥着重要作用,特别是作为小分子、蛋白质和核酸的可编程反应元件;例如作为核糖开关、核糖调节因子和核酶,且在体内和体外都可应用。工程RNA分子功能的多样性给这种新兴的合成生物学预测模型的设计和验证带来挑战。目前,用于揭示RNA序列、结构和行为之间基本关系的研究主要集中在机械热力学建模和低通量实验上,这些实验往往不能提供足够的预测性和可操作性的信息来帮助设计RNA工具。而相比之下,由一系列计算构成的深度学习是非常适用于复杂且高度组合...

2021-01-16 15:04:49 68

原创 Chem. Commun. | 利用基于迁移学习策略的transformer 模型进行Heck反应预测

今天给大家介绍的是浙江工业大学智能制药研究院的段宏亮教授研究团队发表在Chemical Communications上的文章 "Heck reaction prediction using a transformer model based on a transfer learning strategy"。迁移学习是一种将某个领域或任务中学习到的基础知识或模式应用到不同但相关问题中的方法,可以有效缓解因目标任务训练样本过少造成的负面影响。由于该方法的强大应用性,因而引发了研究者对其在化学领域的应用.

2021-01-16 15:01:57 36

原创 Drug Discov. Today | 简要综述GNNs用于分子性质预测

分子性质预测是药物发现领域的一项基本任务。对其进行准确预测的计算方法可以大大加快以更快、更便宜的方式找到更好的候选药物的整体过程。传统的预测分子性质的计算方法主要依靠提取指纹或人为设计的特征,然后与机器学习算法结合使用。为了捕捉当前任务所需的特征,这类分子表征本身就带有领域专家的偏见。为了超越这种偏见,采用更通用的方法,不同类型的机器学习算法被引入到分子性质预测领域。尤其是深度学习算法,由于计算能力的加快,以及大型数据集的可用性越来越高,而且由于其在自然语言处理和模式识别等相关领域的巨大成功...

2021-01-16 14:57:14 53

原创 RDKit | 基于多片段的分子生成(骨架A+骨架B+骨架C)

通过BRICS算法产生片段库 通过结合三个片段(A,B,C)生成ABC型分子。环境Win10 RDKit2020.09.1 Python=3.7.9基于多片段的分子生成导入库import numpy as npimport itertoolsfrom rdkit import rdBase, Chemfrom rdkit.Chem import AllChem, Draw, BRICS, Descriptorsfrom rdkit.ML.Descriptors import

2021-01-15 21:55:33 48

原创 RDKit | 基于片段的分子生成(骨架A+骨架B)

环境Win10 RDKit2020.09.1 Python=3.7.9基于双片段的分子生成导入库import numpy as npfrom rdkit import rdBase, Chemfrom rdkit.Chem import AllChem, Draw, BRICS, Descriptorsfrom rdkit.ML.Descriptors import MoleculeDescriptorsprint(rdBase.rdkitVersion)...

2021-01-15 21:31:09 53 1

原创 RDKit | 基于RDKit操纵分子结构(骨架转换)

环境Win10 RDKit2020.09.1 Python=3.7.9RDKit操纵分子结构导入库import pandas as pdimport numpy as npfrom rdkit import Chemfrom rdkit.Chem import AllChem, DrawMol对象和SMILES之间转换mol = Chem.MolFromSmiles('c1ccccc1')print(mol)smiles = Chem.MolToSmiles(mol

2021-01-15 20:56:32 36

原创 RDChiral | 用于处理立体化学的RDKit封装器

RDChiral用于处理立体化学的RDKit封装器,用于反向合成模板提取和应用。人们对计算机辅助合成设计重新产生了兴趣,其中绝大多数方法都需要应用逆合成反应模板。RDChiral是一个开源的Python包装器,用于在应用以SMARTS字符串编码的逆合成转化时提供一致的立体化学信息处理。RDChiral的设计是为了执行手性四面体中心的引入、破坏、保留和反转,以及双键的顺/反构型。RDChiral的GitHub链接https://github.com/connorcoley/rdchiral

2021-01-10 18:51:46 69

原创 RDKit | 基于随机森林(RF)预测SARS-CoV 3CL蛋白酶抑制剂的pIC50

导入库import sklearnfrom rdkit.Chem import AllChemfrom rdkit import Chemfrom rdkit.Chem import Descriptorsfrom sklearn.model_selection import train_test_splitfrom rdkit.ML.Descriptors import MoleculeDescriptorsimport pandas as pdfrom sklearn.pipe...

2021-01-07 15:10:36 131 2

原创 RDKit | 基于RDKit的肽和核酸序列转换分子Mol对象

RDKit文档中MolFromHELM(),从HELM字符串构建分子(当前仅支持肽)”。另一方面,正如GitHub问题中指出的那样,除了肽之外,实际上还可以从核酸序列创建Mol对象。导入库from rdkit import rdBase, Chemfrom rdkit.Chem import AllChem, Drawfrom rdkit.Chem.Draw import IPythonConsole, rdMolDraw2Dfrom IPython.display import S..

2021-01-06 16:26:23 48

原创 DeepChem | 基于DeepChem的GCN预测化合物溶解度

导入库from __future__ import print_functionfrom __future__ import divisionfrom __future__ import unicode_literalsfrom rdkit import Chemfrom rdkit.Chem.Draw import IPythonConsolefrom rdkit.Chem import Drawimport deepchem as dcimport numpy as np...

2021-01-05 18:57:58 102

原创 DeepChem | PyTorch中用自定义层实现DeepChem的GraphConvLayer

PyTorch中用自定义层实现DeepChem的GraphConvLayer环境DeepChem 2.4 PyTorch 1.7.0 Python3.7.9PyTorch中用自定义层实现DeepChem的GraphConvLayer导入库import torchfrom torch.utils import datafrom deepchem.feat.graph_features import ConvMolFeaturizerfrom deepchem.feat.mol_g

2021-01-05 18:41:15 86 2

原创 DeepChem | Windows 10下anaconda3环境从源码构建并安装deepchem

环境依赖微软构建工具2015年更新3 https://visualstudio.microsoft.com/ja/downloads/Anaconda3 Python 3.7.9编译安装创建deepchem虚拟环境conda create -n deepchem python=3.7激活虚拟环境并安装依赖包conda activate deepchem(deepchem) >conda install tensorflow(deepchem...

2021-01-05 18:28:13 85 3

原创 RDKit | 基于RDKit(≥2020.09.1)的相似图绘制新方法

导入库from rdkit import Chemfrom rdkit.Chem import Drawfrom rdkit.Chem.Draw import SimilarityMapsfrom IPython.display import SVGimport numpy as npimport rdkitprint(rdkit.__version__)2020.09.1基于Morgan指纹的相似图绘制atorvastatin = Chem.MolFromSmi...

2021-01-05 15:19:02 77

原创 RDKit | 基于R基团分解(R-group decomposition)高亮分子

一组共享一个共同骨架的分子上做R基分解(RGD,R-group decomposition),为那些对准骨架的分子生成坐标,并生成分子图像,其中的R基团被涂上了颜色,使它们容易被挑选出来。注:RDKit版本≥2020.09.1导入库import rdkitfrom rdkit import Chemfrom rdkit.Chem import Drawfrom rdkit.Chem.Draw import IPythonConsoleIPythonConsole.molS.

2021-01-05 15:01:07 102 4

原创 RDKit | 基于RDKit的氨基酸序列转换为SMILES

一个氨基酸序列代表的化合物转换为MOL对象,并计算出该分子的描述符,用于机器学习。导入库from rdkit import Chemfrom rdkit.Chem import Drawfrom rdkit.Chem.Draw import IPythonConsoleIPythonConsole.ipython_useSVG = True载入数据peptide_smiles = Chem.MolToSmiles(Chem.MolFromFASTA("RGDfK"))print(

2020-12-30 13:31:45 175 2

原创 RDKit | 基于最大公共子结构(MCS)的分子比对

导入库from rdkit import Chem, rdBasefrom rdkit.Chem import AllChemfrom rdkit.Chem.Draw import IPythonConsolefrom rdkit.Chem import Drawfrom rdkit.Chem import rdDepictorfrom rdkit.Chem import rdFMCSfrom rdkit.Chem import TemplateAlignIPythonConsole.i

2020-12-21 17:17:05 91

原创 Nat. Commun. | 序列到功能的深度学习框架加速工程核糖调节剂设计和优化

作者 | 李梓盟审稿 | 董靖鑫今天给大家介绍由哈佛大学和剑桥大学的研究人员联合发表在Nature Communications的一篇文章。由于对设计规则的理解有限,设计全新的生物回路组...

2020-12-10 12:54:02 70

原创 Elsevier的Greg Landrum访谈 | 成功的开源化学信息软(RDKit)的要素是什么?

RDKit是化学信息学和机器学习软件的集合,正在协助解决化学信息的难题。RDKit的创始人和创建者Greg Landrum在Elsevier的推动下接受了UDM(统一数据模型)团队的采访,分享了他的经验,即成功之路是怎样的,一个开源项目要想成功需要具备哪些要素。采访中所学到的知识将有助于塑造统一数据模型项目的未来,该项目正在从财团主导的Pistoia联盟模式向社区主导的模式转变。Greg Landrum一切是如何开始的?Greg是一名化学家。在德国做完博士后后,他搬到了加州,...

2020-12-09 17:16:02 93

原创 Nat. Mach. Intell. | 深度神经网络中的捷径学习

作者 | 周珍冉审稿 | 赖乐珊今天给大家介绍来自德国蒂宾根大学的Robert Geirhos和加拿大多伦多大学的Claudio Michaelis等人发表在Nature Machine...

2020-12-09 17:16:02 65

原创 RDKit | 可视化官能团, 分子聚类, 相似图, 化合物高亮和骨架网络

利用指纹挑选出不同的分子import pandas as pdligands = pd.read_csv('sample_ligands.csv', index_col=False)['canonical_SMILES'].values.tolist()from rdkit import Chemfrom rdkit.Chem import Drawfrom rdkit.Chem.rdMolDescriptors import GetMorganFingerprintfrom rdkit

2020-12-08 19:09:45 263 1

原创 RDKit | 多肽HELM字符串格式与分子Mol格式间的转换

导入库from rdkit import rdBase, Chemfrom rdkit.Chem import Draw, rdDepictorfrom rdkit.Chem.Draw import IPythonConsoleprint('rdkit version: ', rdBase.rdkitVersion)rdkit version: 2020.03.2Oxytocin_mol = Chem.MolFromHELM('PEPTIDE1{C.Y.I.Q.N.C.P.L.

2020-12-05 15:28:28 75

原创 RDKit | 从ChEMBL数据库提取大分子HELM单体(XML转换为DataFrame并搜索部分结构)

研究大分子的HELM表示。HELM具有分层结构,并结合了单体来代表聚合物(例如肽)。HELM的特征是其表达的可扩展性,还可以通过将原始单体添加到单体库中来表达不自然的结构。另一方面,由于HELM表达式使用缩写(ID),所以如果不共享单体库,则存在指定具有相同ID的不同单体的风险,因此了解单体库很重要。找出什么样的单体信息存储在ChEMBL中,这是HELM也处理的熟悉的数据库。具体旨在读取XML文件中提供的单体库,并将其转换为Pandas DataFrame。导入库import xm

2020-12-05 15:23:03 168 1

原创 DeepMind的蛋白质折叠AI解决了50年来的生物学重大挑战

编·译作者|王建民科学家们表示,谷歌用于预测蛋白质3D形状的深度学习计划有望改变生物学。前言蛋白质是生命的基石,负责细胞内发生的大部分事情。蛋白质的工作方式和功能由其三维形状决定-&...

2020-12-02 02:34:16 93

原创 ICLR2021 | 利用数据扩充提高蛋白质序列模型的通用性

作者 | 李梓盟审稿 | 董靖鑫今天给大家介绍投稿在ICLR2021上的一项工作。由于蛋白质序列上的微小改变可能导致其功能上难以预测的变化,所以蛋白质序列往往无法使用类似于计算机视觉或自...

2020-11-28 15:41:25 65

原创 Nat. Commun. | 多层生物分子网络的鲁棒性研究

作者 | 闫贤编辑 | 王建民今天给大家介绍华中科技大学人工智能与自动化学院Xueming Liu课题组、哈佛医学院Joseph Loscalzo团队和伦斯勒理工学院Jianxi Gao...

2020-11-27 18:43:04 79

原创 RDKit | RDKit处理graph-化合物的邻接矩阵、距离矩阵和维纳指数

化合物的图(graph)表示图可以表示一个原子与另一个原子的连接方式。 只有原子的连接和拓扑结构是重要的,而不是键距。邻接矩阵两个原子之间:如果有结合,则为1; 如果没有结合,则为0。那么,所有的原子间键都可以用下面的矩阵来表示。 这样的表示方法称为图的 "邻接矩阵"(adjacency matrix)。 当有两个键时,有时会用到2。每个原子所连接的键数称为原子的 "度"(degree)。 根据定义,相邻矩阵是对称的。距离矩阵描述两个原子之间最短距离的矩阵称为 .

2020-11-01 16:11:49 326

原创 RDKit | BCUT:基于分子图结构的二维描述符

RDKit实现BCUT描述符Chem.rdMolDescriptors.BCUT2D(mol)Chem.rdMolDescriptors.BCUT2D(mol,atom_props)Chem.rdMolDescriptors.BCUT2D(mol,atom_propname)除非另行指定,否则rdMolDescriptors.BCUT2D方法返回包含8个值的元组。每个值是原子重量 Gasteiger电荷 MolLogP MolMR与用于对角线分量的值原子量的最大内在值...

2020-11-01 10:28:14 232

原创 Nat. Mach. Intell. | 人工智能的透明度和可重复性

今天给大家介绍多伦多大学的研究人员发表在nature machine intelligence上的一篇文章。文章指出McKinney等人利用AI在乳腺癌筛选上的工作,缺乏研究方法和代码实现的细节,阻碍了透明且可重复(transparent and reproducible)的AI研究,文章为扫除这些障碍提供了解决方案。1.背景McKinney等人的工作证明了AI在医学成像中的潜力,同时指出了使此类工作具有可重复性所面临的挑战。McKinney等人认为他们的系统提高了乳腺癌筛查的速...

2020-10-24 17:53:53 126

原创 Nat. Mach. Intell. | 基于神经网络的迁移学习用于单细胞RNA-seq分析中的聚类和细胞类型分类...

作者 |许俊林今天给大家介绍由美国宾夕法尼亚大学佩雷尔曼医学院生物统计学,流行病学和信息学系Jian Hu等人在《Nature Machine Intelligence》上发表了一篇名...

2020-10-17 14:49:15 189 1

原创 Angew. Chem. Int. Ed. | 分子机器学习是合成化学的未来吗?

作者 | 董靖鑫审稿 | 程玉今天给大家介绍的是来自德国威廉姆斯明斯特大学Frank Glorius教授课题组发表在德国应用化学上的文章。本文介绍了分子机器学习在合成化学领域的机遇,提出...

2020-10-16 07:00:00 124

原创 Nat. Mach. Intell. | 可解释性人工智能(xAI)遇上药物发现

编·译作者 | 王建民今天给大家介绍瑞士苏黎世联邦理工学院化学与应用生物科学系 Gisbert Schneider等人在Nature Machine Intelligence上发表的文章...

2020-10-15 06:36:00 153

原创 PNAS | 基因调控之深度学习揭示免疫细胞分化的调节机制

作者 | 程玉审稿 | 李芬今天给大家介绍的是加拿大不列颠哥伦比亚大学和哈佛大学、加拿大CIFAR AI高级研究院合作发表在PNAS的一篇论文。作者借助深度学习中的卷积神经网络提出一个训...

2020-10-14 21:41:40 114

原创 J. Cheminform. | 基于化学基因组学中深度和浅层学习预测药物特异性

作者 | 李梓盟审稿 | 董靖鑫今天给大家介绍由巴黎文理研究大学计算生物研究中心的Veronique Stoven教授课题组发表在J Cheminform上的一篇文章。作者提出一种具有深...

2020-10-13 08:57:04 101

原创 Nat. Commun. | AI语言工具揭示分子运动

编·译作者 | 王建民大家好,今天推荐的是Nature Communication发表的UMD研究人员使用人工智能语言工具解码分子运动的文章,文章的通讯作者是来自马里兰大学化学与生物化学...

2020-10-12 06:36:00 83

原创 KDD 2020 | 理解图表示学习中的负采样

作者 | 董靖鑫审稿 | 李芬今天给大家介绍的是清华大学的Zhen Yang等人在KDD 2020发表的文章“Understanding Negative Sampling in Gra...

2020-10-11 07:00:00 260

原创 ACM SIGKDD | MoFlow:基于流的分子图生成模型

作者 | 程玉审稿 | 李芬今天给大家介绍的是康奈尔大学医学院(Weill Cornell Medicine)健康科学系(Department of Population Health ...

2020-10-10 07:00:00 152

原创 JCIM| 基于双向RNN的分子生成模型

作者 | 程玉审稿 | 李芬今天给大家介绍的是被誉为“欧陆第一名校”苏黎世联邦理工学院(ETH Zurich)化学与应用生物科学系博士生Francesca Grisoni和制药行业顾问G...

2020-10-09 10:29:33 100

pymol-1.8.6.1-cp36-cp36m-win_amd64.whl

pymol1.8.6基于python3.6,大分子作图最实用的软件。

2017-06-30

RDKit Documentation Release 2019.09.1.pdf

开源化学信息学工具包RDKit的手册。RDKit提供各种功能,如不同的化学I/O格式,包括SMILES/SMARTS,结构数据格式(SDF),Thor数据树(TDT),Sybyl线符号(SLN),mol2和蛋白质结构文件(PDB)。子结构搜索; 标准SMILES; 手性支持;化学转化;化学反应;分子序列化;相似性/多样性选择;二维药效团;三维维药效团;分层子图/片段分析; Bemis和Murcko骨架;逆合成组合分析及分子碎裂(RECAP); 多分子最大共同亚结构;功能图;基于形状的相似性;基于RMSD的分子比对;基于形状的对齐;使用Open3-DALIGN算法的无监督分子-分子比对;与PyM

2019-12-26

ActivePerl-5.26_Win_x64.zip

Perl在windows下的安装包,最近发现Perl安装包下载特别麻烦,所以上传一个下载好的方便大家。

2019-10-10

Amber 2020 Reference Manual.pdf

分子动力学软件Amber2020最新的软件手册。AMBER功能涵盖种类非常多的生物分子,包括蛋白、核算以及药物小分子。

2020-05-26

基于神经网络的溶解度预测和回归分析的数据集文件

博文:基于神经网络的溶解度预测和回归分析https://blog.csdn.net/u012325865/article/details/82725777数据集文件。

2018-09-16

pymol-2.1.0-cp36-cp36m-win

pymol2.1基于python3.6,最新的免费释放版本,大分子作图最实用的软件。 安装见链接https://blog.csdn.net/u012325865/article/details/74012128

2018-05-18

2017-Bioinformatics-Volume II- Structure, Function, and Applications

生物信息学方面的书籍,值得推荐。里面很多入门知识和工具的讲解。

2018-05-18

2017-Tutorials in chemoinformatics

化学性吸入损伤方面的书籍,里面有很多代码实例,值得学习。

2018-05-18

qq2648008726的留言板

发表于 2020-01-02 最后回复 2020-07-09

最近申请专栏结果一直没申请不下来,于是我连续申请了几次,但是今天全都出来了!

发表于 2018-09-25 最后回复 2018-09-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除