手把手教你dp:蓝桥杯-地宫寻宝(递归改动态规划DP)

dp系列

手把手教你dp:01背包问题(递归改动态规划DP)
手把手教你dp:摘花生问题(递归改动态规划DP)
手把手教你dp:蓝桥杯-地宫寻宝(递归改动态规划DP)

1 地宫寻宝

X 国王有一个地宫宝库,是 n×m 个格子的矩阵,每个格子放一件宝贝,每个宝贝贴着价值标签。

地宫的入口在左上角,出口在右下角。

小明被带到地宫的入口,国王要求他只能向右或向下行走。

走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。

当小明走到出口时,如果他手中的宝贝恰好是 k 件,则这些宝贝就可以送给小明。

请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这 k 件宝贝。

输入格式
第一行 3 个整数,n,m,k,含义见题目描述。

接下来 n 行,每行有 m 个整数 Ci 用来描述宝库矩阵每个格子的宝贝价值。

输出格式
输出一个整数,表示正好取 k 个宝贝的行动方案数。

该数字可能很大,输出它对 1000000007 取模的结果。

数据范围
1≤n,m≤50,
1≤k≤12,
0≤Ci≤12
输入样例1:
2 2 2
1 2
2 1
输出样例1:
2
输入样例2:
2 3 2
1 2 3
2 1 5
输出样例2:
14

2 递归求解

2.1 思路

当走到某个格子上的时候:
(1)如果格子上宝贝的价值大于已有宝贝的最大值,那么可以选择拿或者不拿
(2)如果格子上宝贝的价值小于或者等于已有宝贝的最大值,那么只能选择不拿。
必须从左上角走到右下角,且只要到达右下角时物品个数满足条件即算一种方案。
只能选择向下或者向右走
不是必须到出口时,宝贝数量恰好满足条件,而是可以在任意位置就宝贝数量就可以满足条件,只需保证到达出口时宝贝数量仍然满足条件即可

2.2 迭代函数代码

curR:当前所在行
curC:当前所在列
curNum:当前宝贝数量
curMax:当前宝贝最大价值

int process(int curR, int curC, int curNum, int curMax){
    if(curR > n || curC > m || curNum > k) return 0; //不能越界,curNum最大只能为K
    if(curR == n && curC == m){ //走到终点
        if(curNum == k || (s[curR][curC] > curMax && curNum + 1 == k))
            return 1;
        else
            return 0;
    }
    if(s[curR][curC] > curMax){//可以选择拿或者不拿
        return process(curR, curC + 1, curNum + 1, s[curR][curC]) +
            process(curR, curC + 1, curNum, curMax) +
            process(curR + 1, curC, curNum + 1, s[curR][curC]) +
            process(curR + 1, curC, curNum, curMax);
    }else{//只能选择不拿
        return process(curR, curC + 1, curNum, curMax) +
            process(curR + 1, curC, curNum, curMax);
    }
}

2.3 递归版本完整代码

#include <iostream>

using namespace std;
const int mod = 1e9+7;
const int N = 55;
int n, m, k, s[N][N];

int process(int curR, int curC, int curNum, int curMax){
    if(curR > n || curC > m || curNum > k) return 0; //不能越界
    if(curR == n && curC == m){ //走到终点
        if(curNum == k || (s[curR][curC] > curMax && curNum + 1 == k))//满足条件,方案数+1
            return 1;
        else
            return 0;
    }
    if(s[curR][curC] > curMax){
        return process(curR, curC + 1, curNum + 1, s[curR][curC]) +
            process(curR, curC + 1, curNum, curMax) +
            process(curR + 1, curC, curNum + 1, s[curR][curC]) +
            process(curR + 1, curC, curNum, curMax);
    }else{
        return process(curR, curC + 1, curNum, curMax) +
            process(curR + 1, curC, curNum, curMax);
    }
}

int main()
{
    cin >> n >> m >> k;
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            cin >> s[i][j];
        }
    }
    cout << process(1, 1, 0, -1) % mod << endl;
    return 0;
}

3 递归改动态规划

3.1 思路

(1)确定dp表的维度,不难发现对于任意一个状态需要curR、curC、curNum和curMax来唯一确定,因此dp表是四维的。
(2)确定各个维度的取值范围:
由于宝贝的价值可以为0,因此一开始所持有0件宝贝,价值为-1,-1无法索引,为了便于在表中表示,我们将所有宝贝的价值都+1
curR:[1, n]
curC:[1,m]
curNum:[0,k]
curMax:[0, c]
注:由题c取最大值12+1=13,n,m,k分别为行、列和要求的宝贝个数,正在输入二维地宫时,从下标1开始
(3)确定目标值在dp表中的位置
目标值即上述调用递归函数所传的初始值:dp[1][1][0][0]
(4)根据递归终止条件,确定dp表的初始状态:
根据终止条件确定dp表的初始状态如下

for(int i = 1; i <= 13; i++) {
    dp[n][m][k][i] = 1;
    if(s[n][m] > i)
        dp[n][m][k-1][i] = 1;
}

即当处在(n,m,k,c),对于任意的c,dp[n][m][k][c]都等于1;
当处在(n,m,k-1,c),对于任意的c,当s[n][m] > c时,dp[n][m][k][c]等于1,否则为0。
(5)确定状态转移方程:
完全可以由上述递归函数代码得出:

if(s[curR][curC] > curMax){
    return process(curR, curC + 1, curNum + 1, s[curR][curC]) +
            process(curR, curC + 1, curNum, curMax) +
            process(curR + 1, curC, curNum + 1, s[curR][curC]) +
            process(curR + 1, curC, curNum, curMax);
}else{
    return process(curR, curC + 1, curNum, curMax) +
            process(curR + 1, curC, curNum, curMax);
}

当s[i][j] > c时,dp[i][j][t][c] = (dp[i][j+1][t+1][s[i][j]] + dp[i+1][j][t+1][s[i][j]] + dp[i][j+1][t][c] + dp[i+1][j][t][c]) % mod;
否则,dp[i][j][t][c] = (dp[i][j+1][t][c] + dp[i+1][j][t][c])%mod;

3.2 dp表求解代码

for(int i = 1; i <= 13; i++) { //dp表初始化
    dp[n][m][k][i] = 1;
    if(s[n][m] > i)
        dp[n][m][k-1][i] = 1;
}
    
for(int i = n; i >= 1; i--){
    for(int j = m; j >= 1; j--){
        for(int t = k; t >= 0; t--){
            for(int c = 13; c >= 0; c--){
                if(i == n && j == m && (t == k || t == k-1)) continue;
                if(s[i][j] > c){
                    dp[i][j][t][c] = (dp[i][j+1][t+1][s[i][j]] + 
                                        dp[i+1][j][t+1][s[i][j]] +
                                        dp[i][j+1][t][c] + 
                                        dp[i+1][j][t][c]) % mod;
                }else{
                    dp[i][j][t][c] = (dp[i][j+1][t][c] + 
                                        dp[i+1][j][t][c])%mod;
                }
            }
        }
    }
}

3.3 dp完整代码

#include <iostream>

using namespace std;
const int mod = 1e9+7;
const int N = 55;
int n, m, k, c, s[N][N];
long long dp[N][N][N][N];

int main()
{
    cin >> n >> m >> k;
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            cin >> s[i][j];
            s[i][j]++;
        }
    }
    for(int i = 1; i <= 13; i++) {
        dp[n][m][k][i] = 1;
        if(s[n][m] > i)
            dp[n][m][k-1][i] = 1;
    }
    
    for(int i = n; i >= 1; i--){
        for(int j = m; j >= 1; j--){
            for(int t = k; t >= 0; t--){
                for(int c = 13; c >= 0; c--){
                    if(i == n && j == m && (t == k || t == k-1)) continue;
                    if(s[i][j] > c){
                        dp[i][j][t][c] = (dp[i][j+1][t+1][s[i][j]] + 
                                        dp[i+1][j][t+1][s[i][j]] +
                                        dp[i][j+1][t][c] + 
                                        dp[i+1][j][t][c]) % mod;
                    }else{
                        dp[i][j][t][c] = (dp[i][j+1][t][c] + 
                                        dp[i+1][j][t][c])%mod;
                    }
                }
            }
        }
    }
    cout << dp[1][1][0][0] << endl;
    return 0;
}

4 递归改dp的步骤

(1)dp表的维度:即状态由几个变量唯一确定。
(2)确定表的各个维度的取值范围。
(3)确定目标值在dp表中的位置。
(4)根据递归终止条件,确定dp表的初始状态。
(5)确定dp表中任意一个位置的值与表中其他位置的依赖关系,即状态转移方程。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值