mne绘制脑地形图

本文档介绍了如何利用mne库在Python中绘制脑地形图。首先,创建mne的raw对象,接着设置通道名并创建epochs和events对象。然后,通过设置montage为' standard_1020'来简化绘图过程。最后,注意到mne的通道位置和名称,并且展示了新发现的更简单的方法。虽然目前仅实现了基本的绘图,但作者计划进一步研究。最近,作者返回来更新,通过处理不同电极配置差异,使用相同代码绘制从seed上提取的特征数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

只有各个通道的脑电数据以及通道名称,借助mne绘制脑地形图

  1. 生成mne的raw对象
  2. 创建events和epochs对象
  3. 给epochs设置通道名 epochs.set_montage(‘standard_1020’),1020即10-20,详情见官方文档,设置好就可画了。这是api里提供的方法,自己挑选在这里插入图片描述在这里插入图片描述
  4. 生成evokeds对象
nave = len(epochs.get_data())
epochs.get_data().shape
evoked_data = np.mean(epochs.get_data(),axis=0)
evokeds = mne.EvokedArray(evoked_data, info=raw.info, tmin=-0.2,nave=nave)
evokeds.set_montage('standard_1020')
evokeds.animate_topomap()

在这里插入图片描述

注意
这是mne的通道位置以及通道名称

我用的SEED数据集,他们位置和名称都有点不一样,多了PO5,PO6,CB1,CB2;大小写也不一样

目前仅做到画出来了,做个记录,待

MNE小波地形图是一种用于绘制地形数据的方法。MNE(Multiscale Morphological Filtering for Terrain Modeling)是一种基于多尺度形态滤波的地形建模方法,可以提取出地形的不同频率成分,从而得到地形的细节信息。 绘制MNE小波地形图的步骤如下: 1. 数据准备:首先需要准备地形数据,可以是数字高程模型(DEM)或其他地形数据集。确保数据的分辨率足够高以提供详细的地形信息。 2. 小波分解:使用小波变换将地形数据分解成不同尺度的频率成分。小波变换通过将地形数据与不同尺度和频率的小波函数进行卷积来实现。通过小波变换,我们可以得到地形数据在不同尺度上的细节信息。 3. 选择尺度:根据需要选择合适的尺度去除不需要的细节信息。选择过大的尺度会平滑地形数据,而选择过小的尺度会保留过多的噪声。根据绘制地形图的目的,选择适当的尺度对地形数据进行过滤。 4. 重构地形数据:将经过滤波的地形数据进行重构,得到更加平滑的地形图。这一步骤使用小波逆变换实现,将经过滤波的尺度频率分量结合起来重构地形数据。 5. 绘制地形图:使用重构的地形数据生成地形图。根据需要,可以选择合适的颜色映射和显示方式来表示地形的高度。 总的来说,MNE小波绘制地形图可以从地形数据中提取出不同尺度的细节信息,使得地形图更具有可读性和真实性。这种方法被广泛应用于地质勘测、地理信息系统和地形分析等领域。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值