tf.nn.softmax_cross_entropy_with_logits_v2

本文深入解析了TensorFlow中tf.nn.softmax_cross_entropy_with_logits_v2函数的使用方法,阐述了如何计算label和logits之间的softmax交叉熵,强调了logits无需预先进行softmax处理的特点,以及如何避免label的反向传播。
摘要由CSDN通过智能技术生成
tf.nn.softmax_cross_entropy_with_logits_v2(
    _sentinel=None,
    labels=None,
    logits=None,
    dim=-1,
    name=None
)

计算label和logits之间的softmax交叉熵

一般logits和label都是[batch,num_classes]维的,但是更高维的也受支持

反向传播会同时发生在logits和label 上,如果不允许反向传播发生在label上,在feeding之前,添加:

tf.stop_gradient

输入的logits不需要运用softmax函数,该函数会自动运用softmax在logits上。

输出:张量,维度和label减去最后一个维度相同

参考:[https://tensorflow.google.cn/api_docs/python/tf/nn/softmax_cross_entropy_with_logits_v2]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值