tf.nn.softmax_cross_entropy_with_logits_v2(
_sentinel=None,
labels=None,
logits=None,
dim=-1,
name=None
)
计算label和logits之间的softmax交叉熵
一般logits和label都是[batch,num_classes]维的,但是更高维的也受支持
反向传播会同时发生在logits和label 上,如果不允许反向传播发生在label上,在feeding之前,添加:
tf.stop_gradient
输入的logits不需要运用softmax函数,该函数会自动运用softmax在logits上。
输出:张量,维度和label减去最后一个维度相同
参考:[https://tensorflow.google.cn/api_docs/python/tf/nn/softmax_cross_entropy_with_logits_v2]