latex输入斜体

LaTeX的每种字体有5种属性:编码、族,形状,系列和尺寸。 下面讨论常用的几个:形状,系列,尺寸。 1)形状指的是倾斜和高矮。 \upshape 切换成直立的字体 \itshape 切换成意大利斜体 \slshape 切换成成为 slanted 的斜体 \scshape 切换成小体大写 2)...

2019-01-16 10:50:54

阅读数 20

评论数 0

2019年 computer vision顶级会议Time Table清单

1. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019) Location :Long Beach Convention & Entertainment Center, Los An...

2018-12-20 00:13:43

阅读数 56

评论数 1

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。   我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最...

2018-12-17 20:40:57

阅读数 15

评论数 0

Python中的encode与decode,详解字符串与字节对象之间的转换

1.相关异常 我们在处理交换的数据时经常遇到这样的异常: TypeError: can't use a string pattern on a bytes-like object TypeError: a bytes-like object is required, not 'str' ....

2018-12-02 21:44:06

阅读数 26

评论数 0

python opencv3.x中支持向量机(svm)模型保存与加载问题

亲自验证,可以解决svm的模型加载问题:     import numpy as np     from sklearn import datasets           X,y = datasets.make_classification(n_samples=100,n_features=2...

2018-11-26 08:59:35

阅读数 68

评论数 0

numpy数据合并和数据的存取np.save, np.load,np.savetxt, np.loadtxt,np.savez, np.load

=====以下是关于numpy数组的合并操作 import numpy as np a=np.arrange(9).reshape(3,-1) >>> a array([[0, 1, 2],        [3, 4, 5],...

2018-11-25 05:49:48

阅读数 97

评论数 0

稀疏表示与字典学习大略讲解

稀疏向量:假设向量X={x1,x2,…xn}中的元素绝大部分为零元素,则称该向量是稀疏的。 稀疏表示:将原始信号表示为在适当选取的一组过完备基(字典D=[d1,d2…dp])上的稀疏线性组合,即信号的稀疏表示,其中d1,d2…dp为字典中的原子。过完备基的意思是其中的原子数大大的超过原始信号的维...

2018-11-25 00:56:53

阅读数 30

评论数 0

机器学习(32)之典型相关性分析(CCA)详解

前言 典型关联分析(Canonical Correlation Analysis,简称CCA)是最常用的挖掘数据关联关系的算法之一。比如我们拿到两组数据,第一组是人身高和体重的数据,第二组是对应的跑步能力和跳远能力的数据。那么我们能不能说这两组数据是相关的呢?CCA可以帮助我们分析这个问题。 ...

2018-11-20 05:47:20

阅读数 1582

评论数 0

【机器学习】交叉验证(cross-validation)

1、什么是交叉验证  交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合。有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集...

2018-11-18 21:38:16

阅读数 21

评论数 0

数值优化(Numerical Optimization)学习系列-惩罚和增广拉格朗日方法(Augmented Lagrangian Methods)

概述     求解带约束的最优化问题,一类很重要的方法就是将约束添加到目标函数中,从而转换为一系列子问题进行求解,最终逼近最优解。关键问题是如何将约束进行转换。本节主要介绍     1. 二次惩罚方法     2. 非平滑惩罚方法     3. 增广拉格朗日方法 二次惩罚方法 动机 带约束问...

2018-11-15 05:25:07

阅读数 41

评论数 0

如何在Linux终端下关闭指定的GPU进程

本人再用terminal终端进行操作时候,发现自己平时使用的GPU被占用了,teamviewer用因为商业化而被禁用,参考别人的程序来 终止使用GPU的程序,如下: 首先,我们在终端输入nvidia-smi: nvidia-smi 在下面的Processes框框里,我们可以看到正常进行的进...

2018-11-02 11:36:12

阅读数 37

评论数 0

关于图像特征提取

特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。  特征的定义          至今为止特征没有万能和精确的定义。特征的精确定义往往由...

2018-10-28 22:33:44

阅读数 18

评论数 0

遗传算法、模拟退火算法、蚁群算法介绍

启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法就是求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能...

2018-10-13 11:36:53

阅读数 168

评论数 0

人工智能是一种好的网络安全工具,也是一把双刃剑

AI在安全方面的角色对白帽黑客和网络罪犯都很有吸引力,但目前似乎还没有找到双方的平衡。 人工智能已经成为网络安全开发者的新宝藏,这要归功于它的潜力,它不仅可以在很大的规模上实现功能自动化,还可以根据它在一段时间内学到的东西来做出相应的决策。这可能会对安全维护人员产生重大影响——通常情况下,公...

2018-10-06 22:51:26

阅读数 87

评论数 0

matlab代码实现图像的:均方根误差MSE、峰值信噪比PSNR、平均绝对误差MAE、结构相似性SSIM

实现matlab编程实现关于图像处理的一些简单的操作,加深对图像处理后图像性能评估的理解:  clc; close all; X = imread('1.jpg'); X=rgb2gray(X); Y=X; Y = imnoise(Y, 'salt & peppe...

2018-10-04 22:38:05

阅读数 1198

评论数 0

压缩感知中的数学知识:线性方程组的解

题目:压缩感知中的数学知识:线性方程组的解 ====================引言==================== 有关“线性方程组的解”这个问题实在是太基础的一个线性代数问题,本也不想去讨论它,但近几天看麻省理工GilbertStrang的线性代数公开课,有些感触,就写写吧,因...

2018-09-26 22:34:11

阅读数 35

评论数 0

姚期智的演讲全文

下午好,非常荣幸能够来到这里,非常感谢主办方邀请我参加这次会议。今天我想要给大家分享一下“人工智能的现在和未来”。我将从一个略微不同的角度来进行探讨,我想这也正好可以补充之前一些精彩演讲的内容。 其实,人工智能已经无处不在了,它已经被应用到诸多不同的领域,无论是自驾车、机器人、医疗,其实它已经给...

2018-09-17 22:11:27

阅读数 97

评论数 0

Names of Journals, related to me...

1.  Journal of Testing and Evaluation. 2018.08.30. 2.  International Journal of Arts and Technology. 2018.07.10. 3.  Visual Computer. 2018. 06.28. ...

2018-08-31 03:47:57

阅读数 30

评论数 0

Panda下的 pd.get_dummies() 与 sklearn.preprocessing 下的 OneHotEncoder 的区别

最近在学习过程中,需要使用Pandas下的pd.get_dummies() 的函数,使用对其进行简单的总结下,也给需要使用的小伙伴们提供参考:    开始主题。。。。 sklearn.preprocessing 下除了提供 OneHotEncoder 还提供 LabelEncoder(简单地将...

2018-08-10 21:38:26

阅读数 166

评论数 0

主页汇总

Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at Microsoft Research New England Vittorio Ferrari at Univ.of E...

2018-08-03 02:26:43

阅读数 46

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭