很毒的一道题
蒟蒻不会LCT,看到有SPFA的做法…于是(看题解)水一发
我们发现我们要求两个权值之和的最小值。这是没有办法实现的,所以我们不妨换个思路,也就是在某一权值的条件下看看达到的最小值是多少(有些拗口)。
换句话说,如果我们以a为关键字对边进行从小到大排序的话,依次加入边,之后对b进行最短路处理。如何处理呢?将这条边的两个顶点加入队列中进行松弛。
显然这个时候加入该边之前最优解是基于上一条a更小的边的,所以我们可以沿用这个最优的dis数组,跑一遍SPFA即可。
最后的ans = min(ans, a + dis[n])。这是因为,如果这条边是最短路的一部分,那么这样一定这条路的最大的a + b。否则,这种情况一定没有上一次枚举得到的最短路更优。
附上丑陋的代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <climits>
using namespace std;
#define MAXN 50003
#define INF 0x3fffff
struct node {
int fr, to, va, vb;
node() {};
node(int a, int b, int c, int d) {
fr = a, to = b, va = c, vb = d;
}
};
node edge[MAXN << 1];
int n, m;
bool cmp(node a, node b) {
return a.va < b.va;
}
vector<node> v[MAXN];
inline void add_edge(int ff, int tt, int vla, int vlb) {
v[ff].push_back(node(ff, tt, vla, vlb));
v[tt].push_back(node(tt, ff, vla, vlb));
}
queue<int> q;
int dis[MAXN];
bool vis[MAXN];
inline void SPFA(int id) {
int fff = edge[id].fr, ttt = edge[id].to;
vis[fff] = vis[ttt] = 1;
q.push(fff), q.push(ttt);
while(!q.empty()) {
int tmp = q.front();
q.pop();
vis[tmp] = 0;
for(int i = 0; i < v[tmp].size(); ++i) {
if(max(v[tmp][i].vb, dis[tmp]) < dis[v[tmp][i].to]) {
dis[v[tmp][i].to] = max(v[tmp][i].vb, dis[tmp]);
if(!vis[v[tmp][i].to])
q.push(v[tmp][i].to),
vis[v[tmp][i].to] = 1;
}
}
}
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cin>>n>>m;
for(int i = 1; i <= m; ++i) {
cin>>edge[i].fr>>edge[i].to>>edge[i].va>>edge[i].vb;
}
sort(edge + 1, edge + m + 1, cmp);
for(int i = 1; i <= n; ++i) dis[i] = INF;
dis[1] = 0;
int ans = INF;
for(int i = 1; i <= m; ++i) {
add_edge(edge[i].fr, edge[i].to, edge[i].va, edge[i].vb);
SPFA(i);
ans = min(ans, dis[n] + edge[i].va);
}
if(ans == INF) cout<<-1<<endl;
else cout<<ans<<endl;
return 0;
}