luogu2387/NOI 2014 魔法森林 SPFA动态加点

很毒的一道题
蒟蒻不会LCT,看到有SPFA的做法…于是(看题解)水一发


我们发现我们要求两个权值之和的最小值。这是没有办法实现的,所以我们不妨换个思路,也就是在某一权值的条件下看看达到的最小值是多少(有些拗口)。
换句话说,如果我们以a为关键字对边进行从小到大排序的话,依次加入边,之后对b进行最短路处理。如何处理呢?将这条边的两个顶点加入队列中进行松弛。
显然这个时候加入该边之前最优解是基于上一条a更小的边的,所以我们可以沿用这个最优的dis数组,跑一遍SPFA即可。
最后的ans = min(ans, a + dis[n])。这是因为,如果这条边是最短路的一部分,那么这样一定这条路的最大的a + b。否则,这种情况一定没有上一次枚举得到的最短路更优。
附上丑陋的代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <climits>
using namespace std;
#define MAXN 50003
#define INF 0x3fffff
struct node {
    int fr, to, va, vb;
    node() {}; 
    node(int a, int b, int c, int d) {
        fr = a, to = b, va = c, vb = d;
    }
}; 
node edge[MAXN << 1];
int n, m;
bool cmp(node a, node b) {
    return a.va < b.va;
}
vector<node> v[MAXN];
inline void add_edge(int ff, int tt, int vla, int vlb) {
    v[ff].push_back(node(ff, tt, vla, vlb));
    v[tt].push_back(node(tt, ff, vla, vlb));
}
queue<int> q;
int dis[MAXN];
bool vis[MAXN];
inline void SPFA(int id) {
    int fff = edge[id].fr, ttt = edge[id].to;
    vis[fff] = vis[ttt] = 1;
    q.push(fff), q.push(ttt);
    while(!q.empty()) {
        int tmp = q.front();
        q.pop();
        vis[tmp] = 0;
        for(int i = 0; i < v[tmp].size(); ++i) {
            if(max(v[tmp][i].vb, dis[tmp]) < dis[v[tmp][i].to]) {
                dis[v[tmp][i].to] = max(v[tmp][i].vb, dis[tmp]);
                if(!vis[v[tmp][i].to])
                    q.push(v[tmp][i].to),
                    vis[v[tmp][i].to] = 1;
            }
        }
    }
}
int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cin>>n>>m;
    for(int i = 1; i <= m; ++i) {
        cin>>edge[i].fr>>edge[i].to>>edge[i].va>>edge[i].vb;
    }
    sort(edge + 1, edge + m + 1, cmp);
    for(int i = 1; i <= n; ++i) dis[i] = INF;
    dis[1] = 0;
    int ans = INF;
    for(int i = 1; i <= m; ++i) {
        add_edge(edge[i].fr, edge[i].to, edge[i].va, edge[i].vb);
        SPFA(i);
        ans = min(ans, dis[n] + edge[i].va);
    }
    if(ans == INF) cout<<-1<<endl;
    else cout<<ans<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值