kino好强啊orz
突然发现连青蛙的约会都没过
怎么办 威严尽失(似乎从未存在)
重修好了!
新年版的CSDNemmmmm
exgcd的数学推导
真是受不了最近的CSDN了。。数学公式怎么可以那么丑!!!
先证gcd的性质,即
gcd(a,b)=gcd(b,a mod b)
g
c
d
(
a
,
b
)
=
g
c
d
(
b
,
a
m
o
d
b
)
该性质证明的话。。就从定义乱搞搞吧
定义
m
m
是最大公因数
,
a mod b=a−b⋅⌊k1k2⌋=m(k1−k2⌊k1k2⌋)
a
m
o
d
b
=
a
−
b
⋅
⌊
k
1
k
2
⌋
=
m
(
k
1
−
k
2
⌊
k
1
k
2
⌋
)
∴a≡b≡(a mod b)(modm)
∴
a
≡
b
≡
(
a
m
o
d
b
)
(
mod
m
)
那什么时候
a mod b=0
a
m
o
d
b
=
0
呢?此时有
k1−k2⌊k1k2⌋=0⇒k1k2=⌊k1k2⌋
k
1
−
k
2
⌊
k
1
k
2
⌋
=
0
⇒
k
1
k
2
=
⌊
k
1
k
2
⌋
也就是
k1
k
1
是
k2
k
2
的整倍数。这意味着什么?由于
m
m
已经是最大公因数,我们不可能找出来一个比更大的公因数了,此时的
k2
k
2
只能是1。那么,
b
b
本身等于,所以我们有这样一行的求gcd:
inline int gcd(int x, int y){
return y ? gcd(y, x % y) : x;
}
好了,现在我们可以来证exgcd了。
exgcd解决的是,对于方程
ax+by=gcd(a,b)
a
x
+
b
y
=
g
c
d
(
a
,
b
)
找一组整数解。那怎么搞?
回溯一下gcd的过程。我们知道,对于求解gcd的过程最后一步一定是求解
gcd(m,0)
g
c
d
(
m
,
0
)
。关注gcd的定义,
gcd(m,0)=m=1×m+0×0
g
c
d
(
m
,
0
)
=
m
=
1
×
m
+
0
×
0
所以说在这个方程最后一步求解的过程中,我们总能找到对应的1和0满足一个解。那么其它情况呢?
假定
ax+by=gcd(b,a mod b)
a
x
+
b
y
=
g
c
d
(
b
,
a
m
o
d
b
)
,如果该方程解为
x′,y′
x
′
,
y
′
则
ax′+(a mod b)y′=gcd(b,a mod b)
a
x
′
+
(
a
m
o
d
b
)
y
′
=
g
c
d
(
b
,
a
m
o
d
b
)
⇒bx′+(a−b⋅⌊ab⌋)y′=gcd(b,a mod b)
⇒
b
x
′
+
(
a
−
b
⋅
⌊
a
b
⌋
)
y
′
=
g
c
d
(
b
,
a
m
o
d
b
)
⇒ay′−b(x′−⌊ab⌋y′)=gcd(b,a mod b)=gcd(a,b)
⇒
a
y
′
−
b
(
x
′
−
⌊
a
b
⌋
y
′
)
=
g
c
d
(
b
,
a
m
o
d
b
)
=
g
c
d
(
a
,
b
)
所以,总能找到
y=x′,x=x′−⌊ab⌋y′
y
=
x
′
,
x
=
x
′
−
⌊
a
b
⌋
y
′
使得方程
ax+by=gcd(a,b)
a
x
+
b
y
=
g
c
d
(
a
,
b
)
有解。运用归纳法,可以得到如下定理:
对于任意整数 a,b a , b , ∃x,y ∃ x , y ,满足 ax+by=gcd(a,b) a x + b y = g c d ( a , b )
事实上,刚刚进行的过程就是exgcd的运行过程。
inline int exgcd(int a, int b, int& x, int &y){
if(!b) {x = 1; y = 0; return a;}
int d = exgcd(b, a % b, x, y);
int z = x; x = y; y = z - y * (a / b);
return d;
}
上述过程中我们以引用传递
x,y
x
,
y
,得到的结果就是一组特解。其执行过程是,如果达到最后一步就返回当前的特解
1,0
1
,
0
,然后逐步回溯。程序最后的返回值是
gcd(a,b)
g
c
d
(
a
,
b
)
。
好了,我们来看方程
ax+by=c
a
x
+
b
y
=
c
,假定
gcd(a,b)=d
g
c
d
(
a
,
b
)
=
d
,则方程有解的条件是
c mod d=0
c
m
o
d
d
=
0
,特解是
cdx0
c
d
x
0
和
cdy0
c
d
y
0
通解则是
x=cdx0+k⋅bd
x
=
c
d
x
0
+
k
⋅
b
d
,
y=cdy0−k⋅ad(k∈Z)
y
=
c
d
y
0
−
k
⋅
a
d
(
k
∈
Z
)
于是乎。。搞完了。
令
t=bd
t
=
b
d
,则最小正整数解显然应当是
((x mod t)+t) mod t
(
(
x
m
o
d
t
)
+
t
)
m
o
d
t
,因为这样解下来的x可能是负数。
然后就可以搞事情喽。
luogu1516 青蛙的约会
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
用小学奥数知识可以知道,如果跳了t步之后绕了q圈相遇,则:
X+mt−Y−nt=L∗q
X
+
m
t
−
Y
−
n
t
=
L
∗
q
从而
(m−n)t+L∗(−q)=Y−X
(
m
−
n
)
t
+
L
∗
(
−
q
)
=
Y
−
X
,对其exgcd即可。
注意细节极多,不要写错。。
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
#define LL long long
LL m, n, t, L, q, X, Y;
inline int exgcd(LL a, LL b, LL &x, LL &y) {
if(!b) {x = 1, y = 0; return a;}
int d = exgcd(b, a % b, x, y);
int f = x; x = y; y = f - y * (a / b);
return d;
}
int main() {
scanf("%d%d%d%d%d", &X, &Y, &m, &n, &L);
if(m < n) swap(m, n), swap(X, Y);
LL d = exgcd(m - n, L, t, q);
if((LL)abs(Y - X) % d != 0) return puts("Impossible"), 0;
t *= (Y - X) / d;
LL M = L / d;
t = (t % M + M) % M;
printf("%d\n", t);
return 0;
}
luogu1082 同余方程
求方程 ax≡1(modb) a x ≡ 1 ( mod b ) 的最小正整数解。
玄学分析一波。该方程等价于求解
ax−by=1
a
x
−
b
y
=
1
,换言之就是
ax+b×(−y)=1
a
x
+
b
×
(
−
y
)
=
1
。
所以其有解的条件是a,b互质。
#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
#define LL long long
LL a, b, x, y;
inline LL exgcd(LL a, LL b, LL& x, LL& y) {
if(!b) { x = 1; y = 0; return a; }
LL d = exgcd(b, a % b, x, y);
LL f = x; x = y; y = f - y * (a / b);
return d;
}
int main() {
scanf("%d%d", &a, &b);
exgcd(a, b, x, y);
x = (x % b + b) % b;
printf("%d\n", x);
return 0;
}
luogu绿了真伤心。。