分类模型与算法--线性判别分析

线性判别分析(LDA)是一种经典的线性学习方法,源于Fisher判别分析,用于二分类问题。其思想是通过投影使同类样本接近,异类样本远离。LDA不仅可以用于分类,还能进行数据降维。在R语言中,使用MASS包的lda函数,以天气预报数据为例,展示了LDA的运用,实现了90%的分类准确率。
摘要由CSDN通过智能技术生成

一、概述

线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的线性学习方法,在二分类问题上最早由Fisher提出,故又称“Fisher判别分析”。
LDA的思想:给定训练样例集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能接近、异类样例的投影点尽可能远离;在对测试集点进行分类时,将其投影到同样的这条直线上,根据投影点的位置来确定样本的类别。
如下图所示:
图片来源于网络
LDA既可以用来做线性分类,也可以单纯用来对数据进行降维。

二、实例

这里仅展示如何使用R语言,用LDA方法解决二分类问题。
R语言中MASS包中的lda函数可以实现该算法。这里采用天气预报数据进行演示。

> #数据录入
> G<-c(rep(1,10),rep(2,10))
> x1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值