一、概述
线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的线性学习方法,在二分类问题上最早由Fisher提出,故又称“Fisher判别分析”。
LDA的思想:给定训练样例集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能接近、异类样例的投影点尽可能远离;在对测试集点进行分类时,将其投影到同样的这条直线上,根据投影点的位置来确定样本的类别。
如下图所示:
LDA既可以用来做线性分类,也可以单纯用来对数据进行降维。
二、实例
这里仅展示如何使用R语言,用LDA方法解决二分类问题。
R语言中MASS包中的lda函数可以实现该算法。这里采用天气预报数据进行演示。
> #数据录入
> G<-c(rep(1,10),rep(2,10))
> x1