机器学习算法笔记:线性分类

线性分类

线性回归模型不能直接用于分类任务,但仅需要加入一层非线性激活函数即可用于分类,分类方式大致可分为硬分类和软分类:

硬分类

直接输出对应类别,这类模型的代表为:

  • 线性判别分析(Fisher 判别)
  • 感知机
软分类

产生不同类别的概率,根据概率方法的不同分大致为两种:

  • 生成式(根据贝叶斯定理先计算参数后验,再进行推断):高斯判别分析(GDA)和朴素贝叶斯(Naive Bayes)等为代表
  • 判别式(直接对条件概率进行建模):Logistic 回归

感知机算法

激活函数

以二分类为例,将线性回归的结果映射到对应的二分类结果上,激活函数可表示为以下形式:
s i g n ( a ) = { + 1 , a ≥ 0 − 1 , a < 0 sign(a)=\left\{\begin{matrix}+1,a\ge0\\ -1,a\lt0\end{matrix}\right. sign(a)={+1,a01,a<0

损失函数

定义损失函数为错误分类的数目 I { y i w T x i < 0 } \mathbf{I}\{y_iw^Tx_i<0\} I{yiwTxi<0},比较直观的方式是使用指示函数,但是指示函数不可导,因此可以定义:
L ( w ) = ∑ x i ∈ D w r o n g − y i w T x i L(w)=\sum\limits_{x_i\in\mathcal{D}{wrong}}-y_iw^Tx_i L(w)=xiDwrongyiwTxi

其中, D w r o n g \mathcal{D}{wrong} Dwrong是错误分类集合,采用梯度下降的算法训练,损失函数对 w w w 的偏导为:
∂ ∂ w L ( w ) = ∑ x i ∈ D w r o n g − y i x i \frac{\partial}{\partial w}L(w)=\sum\limits_{x_i\in\mathcal{D}{wrong}}-y_ix_i wL(w)=xiDwrongyixi

所以更新策略为:
w t + 1 ← w t − λ ∇ w L ⟹ w t + 1 ← w t + λ y i x i \begin{aligned} &w^{t+1}\leftarrow w^t - \lambda\nabla_wL\\ \Longrightarrow &w^{t+1}\leftarrow w^t + \lambda y_ix_i \end{aligned} wt+1wtλwLwt+1wt+λyixi

注意:这里要求数据线性可分,而pocket算法可允许错分类点

线性判别分析 LDA

LDA(Linear Discriminant Analysis) 基本思想就是选定一个方向,将样本顺着该方向投影,投影后的数据需满足以下两个条件可较好地分类:

  • 条件一:类内近。相同类内部的试验样本距离接近。
  • 条件二:类间远。不同类别之间的距离较大。

假定原数据为向量 x x x,在 w w w 方向投影: z = w T ⋅ x = ∣ w ∣ ⋅ ∣ x ∣ cos ⁡ θ z=w^T\cdot x=|w|\cdot|x|\cos\theta z=wTx=wxcosθ

条件一:类内近

同类样本内部应该更接近(更紧凑),假设有两类的试验样本,其数量分别是 N 1 N_1 N1 N 2 N_2 N2,那么采用方差矩阵表示每类内总体分布,用 S S S 表示原数据的协方差: C 1 : V a r z [ C 1 ] = 1 N 1 ∑ i = 1 N 1 ( z i − z c 1 ‾ ) ( z i − z c 1 ‾ ) T = 1 N 1 ∑ i = 1 N 1 ( w T x i − 1 N 1 ∑ j = 1 N 1 w T x j ) ( w T x i − 1 N 1 ∑ j = 1 N 1 w T x j ) T = w T 1 N 1 ∑ i = 1 N 1 ( x i − x c 1 ‾ ) ( x i − x c 1 ‾ ) T w = w T S 1 w C 2 : V a r z [ C 2 ] = 1 N 2 ∑ i = 1 N 2 ( z i − z c 2 ‾ ) ( z i − z c 2 ‾ ) T = w T S 2 w \begin{aligned} C_1:Var_z[C_1]&=\frac{1}{N_1}\sum\limits_{i=1}^{N_1}(z_i-\overline{z_{c1}})(z_i-\overline{z_{c1}})^T\\ &=\frac{1}{N_1}\sum\limits_{i=1}^{N_1}(w^Tx_i-\frac{1}{N_1}\sum\limits_{j=1}^{N_1}w^Tx_j)(w^Tx_i-\frac{1}{N_1}\sum\limits_{j=1}^{N_1}w^Tx_j)^T\\ &=w^T\frac{1}{N_1}\sum\limits_{i=1}^{N_1}(x_i-\overline{x_{c1}})(x_i-\overline{x_{c1}})^Tw\\ &=w^TS_1w\\ C_2:Var_z[C_2] &=\frac{1}{N_2}\sum\limits_{i=1}^{N_2}(z_i-\overline{z_{c2}})(z_i-\overline{z_{c2}})^T\\ &=w^TS_2w \end{aligned} C1:Varz[C1]C2:Varz[C2]=N11i=1N1(zizc1)(zizc1)T=N11i=1N1(wTxiN11j=1N1wTxj)(wTxiN11j=1N1wTxj)T=wTN11i=1N1(xixc1)(xixc1)Tw=wTS1w=N21i=1N2(zizc2)(zizc2)T=wTS2w

所以类内距离可以记为:
V a r z [ C 1 ] + V a r z [ C 2 ] = w T ( S 1 + S 2 ) w \begin{aligned} Var_z[C_1]+Var_z[C_2]=w^T(S_1+S_2)w \end{aligned} Varz[C1]+Varz[C2]=wT(S1+S2)w

条件二:类间远

不同类间隔越远越好,用均值差的平方(两个球距离的远近可用球心距离衡量)来表示:
( z c 1 ‾ − z c 2 ‾ ) 2 = ( 1 N 1 ∑ i = 1 N 1 w T x i − 1 N 2 ∑ i = 1 N 2 w T x i ) 2 = ( w T ( x c 1 ‾ − x c 2 ‾ ) ) 2 = w T ( x c 1 ‾ − x c 2 ‾ ) ( x c 1 ‾ − x c 2 ‾ ) T w \begin{aligned} (\overline{z_{c1}}-\overline{z_{c2}})^2&=(\frac{1}{N_1}\sum\limits_{i=1}^{N_1}w^Tx_i-\frac{1}{N_2}\sum\limits_{i=1}^{N_2}w^Tx_i)^2\\ &=(w^T(\overline{x_{c1}}-\overline{x_{c2}}))^2\\ &=w^T(\overline{x_{c1}}-\overline{x_{c2}})(\overline{x_{c1}}-\overline{x_{c2}})^Tw \end{aligned} (zc1zc2)2=(N11i=1N1wTxiN21i=1N2wTxi)2=(wT(xc1xc2))2=wT(xc1xc2)(xc1xc2)Tw

损失函数

综合两个条件,由于协方差是一个矩阵,将两者相除得到损失函数,并将其最大化:
w ^ = a r g m a x w J ( w ) = a r g m a x w ( z c 1 ‾ − z c 2 ‾ ) 2 V a r z [ C 1 ] + V a r z [ C 2 ] = a r g m a x w w T ( x c 1 ‾ − x c 2 ‾ ) ( x c 1 ‾ − x c 2 ‾ ) T ⏞ S b 类间方差 w w T ( S 1 + S 2 ) ⏟ S w 类内方差 w = a r g m a x w w T S b w w T S w w \begin{aligned} \hat{w}=\mathop{argmax}\limits_wJ(w)&=\mathop{argmax}\limits_w\frac{(\overline{z_{c1}}-\overline{z_{c2}})^2}{Var_z[C_1]+Var_z[C_2]}\\ &=\mathop{argmax}\limits_w\frac{w^T\overbrace{(\overline{x_{c1}}-\overline{x_{c2}})(\overline{x_{c1}}-\overline{x_{c2}})^T}^{\color{blue}S_b\text{类间方差}}w}{w^T\underbrace{(S_1+S_2)}_{\color{blue}S_w\text{类内方差}}w}\\ &=\mathop{argmax}\limits_w\frac{w^TS_bw}{w^TS_ww} \end{aligned} w^=wargmaxJ(w)=wargmaxVarz[C1]+Varz[C2](zc1zc2)2=wargmaxwTSw类内方差 (S1+S2)wwT(xc1xc2)(xc1xc2)T Sb类间方差w=wargmaxwTSwwwTSbw

w w w 只需要提供投影方向, ∣ ∣ w ∣ ∣ ||w|| w 具体大小并不重要(求得方向后可令 ∣ ∣ w ∣ ∣ = 1 ||w||=1 w=1求得具体的 w w w值),对其求偏导,:
∂ ∂ w J ( w ) = 2 S b w ( w T S w w ) − 1 − 2 w T S b w ( w T S w w ) − 2 S w w = 0 ⟹ S b w ( w T S w w ) ⏟ 一维实数 = ( w T S b w ) ⏟ 一维实数 S w w ⟹ w ∝ S w − 1 S b w = S w − 1 ( x c 1 ‾ − x c 2 ‾ ) ( x c 1 ‾ − x c 2 ‾ ) T w ⏟ 一维实数        ∝ S w − 1 ( x c 1 ‾ − x c 2 ‾ ) ⏟ 投影方向 \begin{aligned} &\frac{\partial}{\partial w}J(w)=2S_bw(w^TS_ww)^{-1}-2w^TS_bw(w^TS_ww)^{-2}S_ww=0\\ \Longrightarrow &S_bw\underbrace{(w^TS_ww)}_{\color{blue}\text{一维实数}}=\underbrace{(w^TS_bw)}_{\color{blue}\text{一维实数}}S_ww\\ \Longrightarrow &{\color{blue}w}\propto S_w^{-1}S_bw=S_w^{-1}(\overline{x_{c1}}-\overline{x_{c2}})\underbrace{(\overline{x_{c1}}-\overline{x_{c2}})^Tw}_{\color{blue}\text{一维实数}}\\ &\;\;\;\propto \underbrace{S_w^{-1}(\overline{x_{c1}}-\overline{x_{c2}}) }_{\color{blue}\text{投影方向}} \end{aligned} wJ(w)=2Sbw(wTSww)12wTSbw(wTSww)2Sww=0Sbw一维实数 (wTSww)=一维实数 (wTSbw)SwwwSw1Sbw=Sw1(xc1xc2)一维实数 (xc1xc2)Tw投影方向 Sw1(xc1xc2)

概率判别模型-Logistic 回归

很多时候需要得到某类别的概率(如:天气预报降水概率),那么输出应该是 [ 0 , 1 ] [0,1] [0,1] 区间内的值。对于二分类问题,对 p ( C ∣ x ) p(C|x) p(Cx) 建模,根据用贝叶斯定理:
p ( C 1 ∣ x ) = p ( x ∣ C 1 ) p ( C 1 ) p ( x ∣ C 1 ) p ( C 1 ) + p ( x ∣ C 2 ) p ( C 2 ) p(C_1|x)=\frac{p(x|C_1)p(C_1)}{p(x|C_1)p(C_1)+p(x|C_2)p(C_2)} p(C1x)=p(xC1)p(C1)+p(xC2)p(C2)p(xC1)p(C1)

a = ln ⁡ p ( x ∣ C 1 ) p ( C 1 ) p ( x ∣ C 2 ) p ( C 2 ) a=\ln\frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)} a=lnp(xC2)p(C2)p(xC1)p(C1),于是:
p ( C 1 ∣ x ) = 1 1 + exp ⁡ ( − a ) p(C_1|x)=\frac{1}{1+\exp(-a)} p(C1x)=1+exp(a)1

上式即 Logistic Sigmoid 函数,其参数表示了两类联合概率比值的对数。因此可以令: a = w T x a = w^Tx a=wTx,找到最佳参数 w w w ,即可得到最佳Logistic 回归模型。

概率判别模型常用最大似然估计的方式来确定参数,对于一次观测,获得分类 y y y 的概率为(假定 C 1 = 1 , C 2 = 0 C_1=1,C_2=0 C1=1,C2=0):
p ( y ∣ x ) = p 1 y p 0 1 − y p(y|x)=p_1^yp_0^{1-y} p(yx)=p1yp01y

那么对于 N N N 次独立全同观测 MLE为:
w ^ = a r g m a x w J ( w ) = a r g m a x w ∑ i = 1 N ( y i log ⁡ p 1 + ( 1 − y i ) log ⁡ p 0 ) = a r g m i n w ∑ i = 1 N − ( y i log ⁡ p 1 + ( 1 − y i ) log ⁡ p 0 ) ⏟ c r o s s   e n t r o p y \begin{aligned} \hat{w}=\mathop{argmax}\limits_wJ(w)&=\mathop{argmax}\limits_w\sum\limits_{i=1}^N(y_i\log p_1+(1-y_i)\log p_0) \\ &=\mathop{argmin}\limits_w\underbrace{\sum\limits_{i=1}^N-(y_i\log p_1+(1-y_i)\log p_0)}_{\color{blue} cross\ entropy} \end{aligned} w^=wargmaxJ(w)=wargmaxi=1N(yilogp1+(1yi)logp0)=wargmincross entropy i=1N(yilogp1+(1yi)logp0)

由于有:
p 1 ′ = ( 1 1 + exp ⁡ ( − a ) ) ′ = p 1 ( 1 − p 1 ) p_1'=(\frac{1}{1+\exp(-a)})'=p_1(1-p_1) p1=(1+exp(a)1)=p1(1p1)

则对该表达式求导:
J ′ ( w ) = ∑ i = 1 N y i ( 1 − p 1 ) x i − p 1 x i + y i p 1 x i = ∑ i = 1 N ( y i − p 1 ) x i J'(w)=\sum\limits_{i=1}^Ny_i(1-p_1)x_i-p_1x_i+y_ip_1x_i=\sum\limits_{i=1}^N(y_i-p_1)x_i J(w)=i=1Nyi(1p1)xip1xi+yip1xi=i=1N(yip1)xi

上式无法直接求解,和感知机类似,也可以使用不同大小的批量随机梯度上升(对于最小化就是梯度下降)来得到函数极大值。

概率生成模型-高斯判别分析 GDA

生成模型用于分类其实就是对联合概率分布进行建模 p ( Y ∣ X ) ∝ p ( X ∣ Y ) p ( Y ) = p ( X , Y ) p(Y|X)\propto p(X|Y)p(Y)=p(X,Y) p(YX)p(XY)p(Y)=p(X,Y),因为分类并不需要得到 p ( Y ∣ X ) p(Y|X) p(YX)具体值,分类只要比较大小即可。然后采用 MAP 来获得最佳参数,针对二分类情况,假设:

  • y ∼ B e r n o u l l i ( ϕ ) y\sim Bernoulli(\phi) yBernoulli(ϕ)
  • x ∣ y = 1 ∼ N ( μ 1 , Σ ) x|y=1\sim\mathcal{N}(\mu_1,\Sigma) xy=1N(μ1,Σ)
  • x ∣ y = 0 ∼ N ( μ 0 , Σ ) x|y=0\sim\mathcal{N}(\mu_0,\Sigma) xy=0N(μ0,Σ)

l o g − l i k e l i h o o d log-likelihood loglikelihood 可表示为:
L ( θ ) = log ⁡ ∏ i = 1 N p ( x i , y i ) = ∑ i = 1 N log ⁡ ( p ( x i ∣ y i ) ⋅ p ( y i ) ) = ∑ i = 1 N ( log ⁡ p ( x i ∣ y i ) + log ⁡ p ( y i ) ) = ∑ i = 1 N ( log ⁡ N ( μ 0 , Σ ) 1 − y i + log ⁡ N ( μ 1 , Σ ) y i + log ⁡ ϕ y i ( 1 − ϕ ) 1 − y i ) = ∑ i = 1 N log ⁡ N ( μ 0 , Σ ) 1 − y i ⏟ 1 + ∑ i = 1 N log ⁡ N ( μ 1 , Σ ) y i ⏟ 2 + ∑ i = 1 N log ⁡ ϕ y i ( 1 − ϕ ) 1 − y i ⏟ 3 ⟹ a r g m a x ϕ , μ 0 , μ 1 , Σ L ( θ ) = a r g m a x ϕ , μ 0 , μ 1 , Σ 1 + 2 + 3 \begin{aligned} &\mathcal{L}(\theta)=\log \prod^N_{i=1}p(x_i,y_i)\\ &=\sum\limits_{i=1}^N\log(p(x_i|y_i)\cdot p(y_i))\\ &=\sum\limits_{i=1}^N (\log p(x_i|y_i)+\log p(y_i))\\ &=\sum\limits_{i=1}^N(\log\mathcal{N}(\mu_0,\Sigma)^{1-y_i}+\log \mathcal{N}(\mu_1,\Sigma)^{y_i}+\log\phi^{y_i}(1-\phi)^{1-y_i}) \\ &=\underbrace{\sum\limits_{i=1}^N\log\mathcal{N}(\mu_0,\Sigma)^{1-y_i}}_{\color{blue}1}+\underbrace{\sum\limits_{i=1}^N\log \mathcal{N}(\mu_1,\Sigma)^{y_i}}_{\color{blue}2}+\underbrace{\sum\limits_{i=1}^N\log\phi^{y_i}(1-\phi)^{1-y_i}}_{\color{blue}3}\\ \color{blue}\Longrightarrow &\mathop{argmax}\limits_{\phi,\mu_0,\mu_1,\Sigma} \mathcal{L}(\theta)=\mathop{argmax}\limits_{\phi,\mu_0,\mu_1,\Sigma}\color{blue}1+\color{blue}2+\color{blue}3 \end{aligned} L(θ)=logi=1Np(xi,yi)=i=1Nlog(p(xiyi)p(yi))=i=1N(logp(xiyi)+logp(yi))=i=1N(logN(μ0,Σ)1yi+logN(μ1,Σ)yi+logϕyi(1ϕ)1yi)=1 i=1NlogN(μ0,Σ)1yi+2 i=1NlogN(μ1,Σ)yi+3 i=1Nlogϕyi(1ϕ)1yiϕ,μ0,μ1,ΣargmaxL(θ)=ϕ,μ0,μ1,Σargmax1+2+3

1、首先求解 ϕ \color{blue}\boxed{\phi} ϕ ,对其求偏导:
∑ i = 1 N y i ϕ + y i − 1 1 − ϕ = 0 ⟹ ϕ = ∑ i = 1 N y i N = N 1 N \begin{aligned}&\sum\limits_{i=1}^N\frac{y_i}{\phi}+\frac{y_i-1}{1-\phi}=0\\ \Longrightarrow&{\color{blue}\phi}=\frac{\sum\limits_{i=1}^Ny_i}{N}=\frac{N_1}{N} \end{aligned} i=1Nϕyi+1ϕyi1=0ϕ=Ni=1Nyi=NN1

2、然后求解 μ 1 \color{blue}\boxed{\mu_1} μ1
μ 1 ^ = a r g m a x μ 1 ∑ i = 1 N y i log ⁡ N ( μ 1 , Σ ) = a r g m i n μ 1 ∑ i = 1 N y i ( x i − μ 1 ) T Σ − 1 ( x i − μ 1 ) \begin{aligned} \hat{\mu_1}&=\mathop{argmax}\limits_{\mu_1}\sum\limits_{i=1}^Ny_i\log\mathcal{N}(\mu_1,\Sigma)\\ &=\mathop{argmin}\limits_{\mu_1}\sum\limits_{i=1}^Ny_i(x_i-\mu_1)^T\Sigma^{-1}(x_i-\mu_1) \end{aligned} μ1^=μ1argmaxi=1NyilogN(μ1,Σ)=μ1argmini=1Nyi(xiμ1)TΣ1(xiμ1)

由于:
∑ i = 1 N y i ( x i − μ 1 ) T Σ − 1 ( x i − μ 1 ) = ∑ i = 1 N y i x i T Σ − 1 x i − 2 y i μ 1 T Σ − 1 x i + y i μ 1 T Σ − 1 μ 1 \begin{aligned} & \sum\limits_{i=1}^Ny_i(x_i-\mu_1)^T\Sigma^{-1}(x_i-\mu_1) \\&=\sum\limits_{i=1}^Ny_ix_i^T\Sigma^{-1}x_i-2y_i\mu_1^T\Sigma^{-1}x_i+y_i\mu_1^T\Sigma^{-1}\mu_1 \end{aligned} i=1Nyi(xiμ1)TΣ1(xiμ1)=i=1NyixiTΣ1xi2yiμ1TΣ1xi+yiμ1TΣ1μ1

提取 μ 1 \mu_1 μ1相关项:
∑ i = 1 N − 2 y i Σ − 1 x i + 2 y i Σ − 1 μ 1 = 0 ⟹ μ 1 = ∑ i = 1 N y i x i ∑ i = 1 N y i = ∑ i = 1 N y i x i N 1 \begin{aligned} &\sum\limits_{i=1}^N-2y_i\Sigma^{-1}x_i+2y_i\Sigma^{-1}\mu_1=0\\ \Longrightarrow\color{blue}\mu_1&=\frac{\sum\limits_{i=1}^Ny_ix_i}{\sum\limits_{i=1}^Ny_i}=\frac{\sum\limits_{i=1}^Ny_ix_i}{N_1} \end{aligned} μ1i=1N2yiΣ1xi+2yiΣ1μ1=0=i=1Nyii=1Nyixi=N1i=1Nyixi

3、求解 μ 0 \color{blue}\boxed{\mu_0} μ0,由于正反例是对称的,所以: μ 0 = ∑ i = 1 N ( 1 − y i ) x i N 0 {\color{blue}\mu_0} =\frac{\sum\limits_{i=1}^N(1-y_i)x_i}{N_0} μ0=N0i=1N(1yi)xi

4、求解 Σ \color{blue}\boxed{\Sigma} Σ
模型假设正反例的协方差矩阵相同,由上面几个参数的解可知:即使协方差矩阵不同也不会影响前面三个参数的求解。
先验知识 t r ( A B ) = t r ( B A ) t r ( A B C ) = t r ( C A B ) = t r ( B C A ) ∂ ∂ A ( ∣ A ∣ ) = ∣ A ∣ A − 1 ∂ ∂ A T r a c e ( A B ) = B T {\color{blue}\text{先验知识}} \\ \boxed{\begin{aligned} &tr(AB)=tr(BA)\\ &tr(ABC)=tr(CAB)=tr(BCA)\\ &\frac{\partial}{\partial A}(|A|)=|A|A^{-1}\\ &\frac{\partial}{\partial A}Trace(AB)=B^T \end{aligned}} 先验知识tr(AB)=tr(BA)tr(ABC)=tr(CAB)=tr(BCA)A(A)=AA1ATrace(AB)=BT

首先有:
∑ i = 1 N log ⁡ N ( μ , Σ ) = ∑ i = 1 N log ⁡ ( 1 ( 2 π ) p / 2 ∣ Σ ∣ 1 / 2 ) + ( − 1 2 ( x i − μ ) T Σ − 1 ( x i − μ ) ⏟ 一维实数 ) = C o n s t − 1 2 N log ⁡ ∣ Σ ∣ − 1 2 T r a c e ( ( x i − μ ) T Σ − 1 ( x i − μ ) ) = C o n s t − 1 2 N log ⁡ ∣ Σ ∣ − 1 2 T r a c e ( ( x i − μ ) ( x i − μ ) T ⏟ S Σ − 1 ) = C o n s t − 1 2 N log ⁡ ∣ Σ ∣ − 1 2 N T r a c e ( S Σ − 1 ) \begin{aligned} \sum\limits_{i=1}^N\log\mathcal{N}(\mu,\Sigma) &=\sum\limits_{i=1}^N\log(\frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}})+(-\frac{1}{2}\underbrace{(x_i-\mu)^T\Sigma^{-1}(x_i-\mu)}_{\color{blue}\text{一维实数}})\\ &=Const-\frac{1}{2}N\log|\Sigma|-\frac{1}{2}Trace((x_i-\mu)^T\Sigma^{-1}(x_i-\mu))\\ &=Const-\frac{1}{2}N\log|\Sigma|-\frac{1}{2}Trace(\underbrace{(x_i-\mu)(x_i-\mu)^T}_{\color{blue}S}\Sigma^{-1})\\ &=Const-\frac{1}{2}N\log|\Sigma|-\frac{1}{2}NTrace(S\Sigma^{-1}) \end{aligned} i=1NlogN(μ,Σ)=i=1Nlog((2π)p/2Σ1/21)+(21一维实数 (xiμ)TΣ1(xiμ))=Const21NlogΣ21Trace((xiμ)TΣ1(xiμ))=Const21NlogΣ21Trace(S (xiμ)(xiμ)TΣ1)=Const21NlogΣ21NTrace(SΣ1)

因此:
1 + 2 = C o n s t − 1 2 N log ⁡ ∣ Σ ∣ − 1 2 N 1 T r a c e ( S 1 Σ − 1 ) − 1 2 N 2 T r a c e ( S 2 Σ − 1 ) \begin{aligned} {\color{blue}1}+{\color{blue}2}=Const-\frac{1}{2}N\log|\Sigma|-\frac{1}{2}N_1Trace(S_1\Sigma^{-1})-\frac{1}{2}N_2Trace(S_2\Sigma^{-1}) \end{aligned} 1+2=Const21NlogΣ21N1Trace(S1Σ1)21N2Trace(S2Σ1)

其中, S 1 , S 2 S_1,S_2 S1,S2 分别为两类数据内部的协方差矩阵,又因为只有 1 {\color{blue}1} 1 2 {\color{blue}2} 2 项与 Σ \Sigma Σ 有关,对 Σ \Sigma Σ 求偏导并令其为 0 :
∂ 1 + 2 Σ = N Σ − 1 − N 1 S 1 T Σ − 2 − N 2 S 2 T Σ − 2 = 0 ⟹ Σ = N 1 S 1 + N 2 S 2 N \begin{aligned} &\frac{\partial {\color{blue}1}+{\color{blue}2}}{\Sigma}=N\Sigma^{-1}-N_1S_1^T\Sigma^{-2}-N_2S_2^T\Sigma^{-2}=0\\ \Longrightarrow&{\color{blue}\Sigma}=\frac{N_1S_1+N_2S_2}{N} \end{aligned} Σ1+2=NΣ1N1S1TΣ2N2S2TΣ2=0Σ=NN1S1+N2S2

上式利用了协方差矩阵的对称性。至此,模型所有参数都已得到。

概率生成模型-朴素贝叶斯

朴素贝叶斯假设=条件独立性假设
上面的高斯判别分析的是对数据集的分布作出了高斯分布的假设,同时引入伯努利分布作为类先验,从而利用最大后验求得这些假设中的参数。

要得到 p ( x ∣ y ) p(x|y) p(xy) ,由于 x x x p p p 维,因此需要对高维度的联合概率进行采样,但高维空间的采样需要非常大样本量才能获得较为准确的概率近似。为简化计算,朴素贝叶斯对数据的属性之间的关系作出了朴素贝叶斯假设(条件独立性假设):
p ( x ∣ y ) = ∏ i = 1 p p ( x i ∣ y ) p(x|y)=\prod\limits_{i=1}^pp(x_i|y) p(xy)=i=1pp(xiy)

也就是: x i ⊥ x j ∣ y , ∀   i ≠ j x_i\perp x_j|y,\forall\ i\ne j xixjy, i=j

根据贝叶斯定理: p ( y ∣ x ) = p ( y , x ) p ( x ) = p ( x ∣ y ) p ( y ) p ( x ) ∝ p ( x ∣ y ) p ( y ) = ∏ i = 1 p p ( x i ∣ y ) p ( y ) p(y|x)= \frac{p(y,x)}{p(x)}=\frac{p(x|y)p(y)}{p(x)}\propto p(x|y)p(y)={\prod\limits_{i=1}^pp(x_i|y)p(y)} p(yx)=p(x)p(y,x)=p(x)p(xy)p(y)p(xy)p(y)=i=1pp(xiy)p(y)

假如还是二分类问题分布
y ^ = arg max ⁡ y p ( y ∣ x ) = arg max ⁡ y = { 0 , 1 } ∏ i = 1 p p ( x i ∣ y ) p ( y ) \hat y =\argmax_y p(y|x) =\argmax_{y=\{0,1\}} {\prod\limits_{i=1}^pp(x_i|y)p(y)} y^=yargmaxp(yx)=y={0,1}argmaxi=1pp(xiy)p(y)

参考文献

【1】线性分类
【2】感知机原理小结
【3】逻辑回归原理小结
【4】scikit-learn 逻辑回归类库使用小结
【5】线性判别分析LDA原理总结

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值