ccsu1359 木棒相交 (叉积线段判交,并查集判断是否属于同一个集合)

  题意:判断n条木棒中木棒a是否与木棒b相交。其中木棒的相交具有传递性。

 

 首先用一个判断线段是否相交的函数判断相交:

  

struct Point
{
    double x;
    double y;
};
typedef struct Point point;
Const int easp=1e-9;
//叉积
double multi(point p0, point p1, point p2) //根据斜率:y2/x2 - y1/x2!=0则相交
{   //根据p1点在线段p0 p2的哪一侧,若线段中两点p1 p3分别在p0 p2两侧,则必定线段相交。
    return ( p1.x - p0.x )*( p2.y - p0.y )-( p2.x - p0.x )*( p1.y - p0.y );
}
//相交返回true,否则为false, 接口为两线段的端点
bool isIntersected(point s1,point e1, point s2,point e2)
{
    return  (max(s1.x,e1.x) >= min(s2.x,e2.x))  &&
            (max(s2.x,e2.x) >= min(s1.x,e1.x))  &&
            (max(s1.y,e1.y) >= min(s2.y,e2.y))  &&
            (max(s2.y,e2.y) >= min(s1.y,e1.y))  &&
            (multi(s1,s2,e1)*multi(s1,e1,e2)>=0) &&
            (multi(s2,s1,e2)*multi(s2,e2,e1)>=0);
}


 

然后解决相交的 传递性:

 用并查集解: 用一个数组fa[1010]存储每条线段的相交的起始点。即若1与3、5相交,而3与6、8相交,则6的fa为3,但是6的起始相交点为3的fa即1,8同理。若1与3、5相交,而2与7、9、4相交,而5与9相交,则需要找到5与9两者的起始点,让任意一个起始点的fa等于另一个起始点(将两者联系起来)。

 

并查集的相关学习:(引自:Cherish_yimi

l         并查集:(union-find sets)

一种简单的用途广泛的集合. 并查集是若干个不相交集合,能够实现较快的合并和判断元素所在集合的操作,应用很多,如其求无向图的连通分量个数等。最完美的应用当属:实现Kruskar算法求最小生成树。

l         并查集的精髓(即它的三种操作,结合实现代码模板进行理解):

1、Make_Set(x) 把每一个元素初始化为一个集合

初始化后每一个元素的父亲节点是它本身,每一个元素的祖先节点也是它本身(也可以根据情况而变)。

2、Find_Set(x) 查找一个元素所在的集合

查找一个元素所在的集合,其精髓是找到这个元素所在集合的祖先!这个才是并查集判断和合并的最终依据。
判断两个元素是否属于同一集合,只要看他们所在集合的祖先是否相同即可。
合并两个集合,也是使一个集合的祖先成为另一个集合的祖先,具体见示意图

3、Union(x,y) 合并x,y所在的两个集合

合并两个不相交集合操作很简单:
利用Find_Set找到其中两个集合的祖先,将一个集合的祖先指向另一个集合的祖先。如图



l         并查集的优化

1、Find_Set(x)时 路径压缩
寻找祖先时我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度,有没有办法减小这个复杂度呢?
答案是肯定的,这就是路径压缩,即当我们经过"递推"找到祖先节点后,"回溯"的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find_Set(x)时复杂度就变成O(1)了,如下图所示;可见,路径压缩方便了以后的查找。

2、Union(x,y)时 按秩合并
即合并的时候将元素少的集合合并到元素多的集合中,这样合并之后树的高度会相对较小。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值