[COCI2016-2017#2] Prosječni 解题记录

本文描述了解题过程,如何构造一个n×n矩阵,使得每行和每列的平均值等于该行或列中的最大值减去最小值的一半。对于奇数n,元素按顺序排列;偶数n时,除最后一行外其他元素乘以2,再调整特定位置的元素以保持平均数。
摘要由CSDN通过智能技术生成

[COCI2016-2017#2] Prosječni 解题记录


题意简述

构造一个 n × n n \times n n×n 的矩阵,使得每一行/列的平均都在这一行/列当中,并且矩阵内各个数字不相同。


题目分析

观察样例就可以轻松发现:当 n n n 为奇数时,矩阵内的各个元素就是 1 ∼ n 1 \sim n 1n 的按顺序排列。
证明:

  • 对于每一行,公差为 1 1 1,设每一行第一个数为 x x x,第 k k k 项为 x + ( k − 1 ) x+(k-1) x+(k1) 其中 1 ≤ k ≤ n 1 \leq k \leq n 1kn,那么这一行的和就是 ( x + x + n − 1 ) × n 2 \frac{(x+x+n-1)\times n}{2} 2(x+x+n1)×n,平均数是 x + x + n − 1 2 = x + ( n − 1 ) 2 \frac{x+x+n-1}{2}=x+\frac{(n-1)}{2} 2x+x+n1=x+2(n1)
  • 因为 n n n 是奇数,所以 n − 1 2 \frac{n-1}{2} 2n1 是整数,且 1 ≤ n − 1 2 ≤ n 1 \leq \frac{n-1}{2} \leq n 12n1n
  • 每一列同理。
    证毕。
    如果 n n n 为偶数,我们以同样的方式构造,每一行的平均数同样为 x + ( n − 1 ) 2 \frac{x+(n-1)}{2} 2x+(n1),但是这个时候它是小数,我们只需要对这个矩阵的每一项都 × 2 \times 2 ×2,这样平均数就变成了 x + ( n − 1 ) x+(n-1) x+(n1) 这个整数。但是它也是一个奇数,怎么办呢?因为我们构造的矩阵公差相同,所以和平均数最相近的两个数肯定是中间的,为了使和不变,我们可以将每一行的第 n ÷ 2 n\div2 n÷2 + 1 +1 +1,同时将第 n ÷ 2 + 1 n \div 2+1 n÷2+1 − 1 -1 1,那么每一行就构造完成了(这里也说明了只有 n = 2 n=2 n=2 的时候才无解)。
    接下来考虑每一列,只需要将最后一行加上 n 2 n^2 n2 即可满足条件。
    证明:
  • 对于每一列,公差为 2 n 2n 2n,设每一列第一个数为 x x x,第 k k k 项就为 x + ( k − 1 ) × 2 n x+(k-1)\times 2n x+(k1)×2n 其中 1 ≤ k ≤ n 1 \leq k \leq n 1kn,那么这一列的和就是 [ x + x + ( n − 1 ) × 2 n ] × n 2 \frac{[x+x+(n-1) \times 2n]\times n}{2} 2[x+x+(n1)×2n]×n,平均数是 x + x + ( n − 1 ) × 2 n 2 = x + n ( n − 1 ) = x + n − 1 2 × 2 n \frac{x+x+(n-1) \times 2n}{2}=x+n(n-1)=x+\frac{n-1}{2} \times 2n 2x+x+(n1)×2n=x+n(n1)=x+2n1×2n
  • 因为 n n n 是偶数,所以 n − 1 2 \frac{n-1}{2} 2n1 不是整数,但是 n 2 \frac{n}{2} 2n 是,所以考虑将每列的最后一项加上 n 2 n^2 n2,等价于将每一项加上 n n n,平均数也加上 n n n,变为 x + n 2 × 2 n x+\frac{n}{2} \times 2n x+2n×2n,其中 1 ≤ n 2 ≤ n 1\leq \frac{n}{2} \leq n 12nn
    证毕。

AC Code
#include<bits/stdc++.h>
#define arrout(a,n) rep(i,1,n)std::cout<<a[i]<<" "
#define arrin(a,n) rep(i,1,n)std::cin>>a[i]
#define rep(i,x,n) for(int i=x;i<=n;i++)
#define dep(i,x,n) for(int i=x;i>=n;i--)
#define erg(i,x) for(int i=head[x];i;i=e[i].nex)
#define dbg(x) std::cout<<#x<<":"<<x<<" "
#define mem(a,x) memset(a,x,sizeof a)
#define all(x) x.begin(),x.end()
#define arrall(a,n) a+1,a+1+n
#define PII std::pair<int,int>
#define m_p std::make_pair
#define u_b upper_bound
#define l_b lower_bound
#define p_b push_back
#define CD const double
#define CI const int
#define int long long
#define il inline
#define ss second
#define ff first
#define itn int
CI N=105;
int n,a[N][N];
signed main() {
    std::cin>>n;
    if(n==2) {
        puts("-1");
        exit(0);
    }
    int k=0;
    rep(i,1,n) {
        rep(j,1,n) {
            a[i][j]=++k;
        }
    }
    if(n&1) {
        rep(i,1,n) {
            rep(j,1,n) {
                std::cout<<a[i][j]<<" ";
            }
            puts("");
        }
    } else {
        rep(i,1,n) {
            rep(j,1,n) {
                a[i][j]*=2;
            }
        }
        rep(i,1,n) {
            a[i][n/2]++;
            a[i][n/2-1]--;
        }
        rep(i,1,n) {
            a[n][i]+=n*n;
        }
        rep(i,1,n) {
            rep(j,1,n) {
                std::cout<<a[i][j]<<" ";
            }
            puts("");
        }
    }
    return 0;
}
题目描述: 有一家餐馆,它的特色菜是一种叫做“Perket”的菜肴。这道菜由N种不同的香料组成,每种香料都有一个正整数的苦味值和一个正整数的美味值。每道菜需要用到至少一种香料,而且每种香料只能用一次。每道菜的苦味值是所有用到的香料的苦味值的乘积,美味值是所有用到的香料的美味值的和。现在,你需要计算出所有菜肴中苦味值和美味值的差的绝对值的最小值。 输入格式: 第一行包含整数N。 接下来N行,每行包含两个整数,表示一种香料的苦味值和美味值。 输出格式: 输出一个整数,表示所有菜肴中苦味值和美味值的差的绝对值的最小值。 输入样例: 3 1 7 2 6 3 8 输出样例: 1 解题思路: 这道题目可以使用二进制枚举的方法来解决。 首先,我们可以将所有的香料的苦味值和美味值分别存储在两个数组中。 然后,我们可以使用二进制枚举的方法来枚举所有的菜肴。具体来说,我们可以使用一个二进制数来表示一道菜肴,其中第i位为1表示这道菜肴中使用了第i种香料,为表示没有使用。 对于每一道菜肴,我们可以计算出它的苦味值和美味值,并将它们分别存储在两个数组中。 最后,我们可以枚举所有的菜肴,计算它们的苦味值和美味值的差的绝对值,并找到其中的最小值。 时间复杂度: 枚举所有的菜肴需要O(2^N)的时间复杂度,计算每道菜肴的苦味值和美味值需要O(N)的时间复杂度,因此总时间复杂度为O(2^N*N)。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值